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Lecture-7
Occupation Probability and Carrier Concentration

Good morning continuing with the course today we will discuss occupation probability and

carrier concentration.

(Refer Slide Time: 00:26)

In the last class we have discussed about the density of states, row of E, it was given by an

expression 1/2phy square*2mc/h cross square for valence band and conduction band to the

power 3/2*E-Ec to the power 1/2 for t greater than the density of states and as I mentioned

the importance of density of states is to determine the carrier concentration and we need to

determine the carrier concentration to know the current and carrier concentration is given by

N of E de.
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And where N of E is the density of careers and this is equal to density of carriers is equal to

available density of states multiplied by the probability of occupation. So f of E here is the

probability of occupation.  We will discuss this probability of occupation in this class and

determine the carrier concentration.

(Refer Slide Time: 02:26)

The probability of occupation for electrons is given by the Fermi function f of E=1/E to the

power  E-Ex/dt+1.  The  probability  of  occupation  of  electrons  in  an  energy  level  E,  so

electrons in energy band this is E call is the vertical axis is energy, this is Ec, this is Ev,

anywhere if you take an energy level in the valence band let us say E=E1 or if you take an

energy level in the conduction band let us say E=E2.



Then if you want to find out the probability the occupation both these bands have number of

states allowed number of states what is the probability of occupation of these allowed states.

The probability of occupation for valence band as well as the conduction band probability of

occupation by electrons is given by the Fermi function. So if you substitute if you want to

find out probability of occupation here E1.

Then you substitute E1 here, if you want to find out the probability of occupation E2 at the

level E2 then you substitute E2 in this equation. That Ef is the constant or Fermi energy here.

Fermi  function  is  also  called  Fermi  graph  distribution  because  it  tell  us  it  indicates  the

distribution of electrons in the energy bands. So if you want to plot this f of Environment

As you know in the valance band the probability of occupation is very high valance band is

completely full at 0 times, so this is Ev and this is Ec and here is E, this is the conduction

band and this is the valance band, if you consider a 0k I want to plot here on this axis f of E

many times in statistic physics f of E is further here and energy in this axis. But here this

always give the vertical axis E, so if you plot f of E here at 0k I would take valance band is

completely full.

And the probability of occupation here is 0 and as you know that if Ef remains somewhere

here can anywhere, but if you have s here then the probability of occupation is 0 up to Ef and

for Er here greater than Ef, the probability of occupation is 1. So in this axis this is 0 f of

E=1. So I plotted as f of E as a function of f of E as a function or F of E as a function of E

where E greater than Ef probability 0 and E less than.
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There will be a level if the level of f or anywhere for example probability=1 here, what does

it mean, there is no level, there is no state permitted. If there were to be a state then the

probability  would  have  been  1,  but  all  the  levels  here  are  completely  full  completely

probability is 1. If you take a finite temperature this is what you already know that if you take

for any temperature at E=Ef that is at this level.

E=Ef for any temperature the numerator is 0 and therefore E, 0is 1, 1+1 or the probability is

half, so f of E=half for all temperature f of E=1/2, so if I indicates that half here this is 0.5

and see I am plotting probability on this axis f of E, if this is 1/2 then if you take any finite

temperature we know that the electrons from the valance band make an upward transition

here.

This is a final probability of finding electrons in the conduction band and probability function

is still described by the property distribution is still destroyed by the Fermi function and the

Fermi function gets smear, this step function now get smear here, but passes thorough the

same point this is f of E then actually block this numerical you plot this and numerically you

calculate and plot this for any temperature.

So this is for a finite temperature t,  t  greater than 0, what it  indicates  if there is a finite

probability here of occupation of these states in the conduction band. This function is f of E

what is 1-f of E if f of E is the probability  that a state is occupied wher 1-f of E is the

probability that the state is vacant and occupied the state is vacant. In the valence band if 1-f

of E you see it is a f of E is going like this.



(Refer Slide Time: 09:02)

Therefore f of E is the probability of occupation therefore 1-f of E is the probability that the

state is vacant, if I plot again the same I am plotting again this is Ev and this is Ec, the Fermi

function is at a finite temperature is varying like this. So this is the line f of E this is f of E or

on the x-axis I have f of E vertical axis is the energy and find somewhere here therefore BF is

somewhere here Ef.

At any given energy value E1 I find out what is a f of E, this is the value f of E say for

example 0.9 0.9 say f of E 0.9 it means the energy the occupation probability of the energy

level E1 is 0.9 which means the probability that the state at even is vacant is 0.1 1-0.9 is 0.1

that is this one, this magnitude here it is magnitude of this length is 0.9 then this is 0.1. This is

the probability that the state is vacant.

The vacant state in the valance band represents what it is a code therefore 1-f of E represents

the probability of occupation of a hole 1-f of E is the probability that the state is vacant which

means as far as valence band you do not thought the hole in the conduction band for example

let me take here at some value E2, E2 is the value in the conduction band energy value in the

conduction band somewhere E2, this maybe for number let us 0.05.

For example so probability of occupation here 0.05, what is the probability that there is no

occupation the probability that there is no occupation that is this one 1-f of E is 0.95 because

this is 0.05 therefore this is 0.95, that is not the probability of occupation of a hole but that is



the  probability  that  the  state  is  vacant.  So  please  remember  f  of  E is  the  probability  of

occupation of electrons weather in the conduction band or the valance balance.

(Refer Slide Time: 13:06)

But 1-f of E is the probability of occupation of a hole if you are talking of the valance band.

Otherwise it is the probability that the state is unoccupied, so 1-f of E is the probability of

occupation of a hole in the valance band obviously. At a final temperature there is always a

probability that there are some electrons in the conduction band and there are some holes in

the valance band.

Of course depend on band Eg, if Eg is very large that is a 5 electron volts then the probability

of  finding electron  here maybe 10 to  the power -20 which means literally  none,  but  for

normal semiconductors Eg is of the order of 1 electron volt which is the probability of finding

electrons here. So that the second thing that you have to see is this is Ef then the curve look

something like this.

Please let me indicate first graphically because graphically becomes very clear this axis is f of

E and this is 1 probability and this is 0 and E=Ef this is 0.5. If Ef is towards Ec, this is Ev, if

here shifts towards Ec that means the probability function because this point at E=Ef. So let

me draw a second value of Ef, this is Ef 0, let me call this as Ef1. So another material if

Fermi function is Ef1 it means this point of probability of half should come here.

That means this should shift up for the up so I will have the curve will be parallel please see

that the curve remains parallel this one but it is shifted up, what does that mean and clearly



the curve shows that now the probability of occupation of electrons in the conduction band is

known and probability here has become very small 1-f of E number of holes here will be very

small probability of occupation.

When the other band if the Fermi function where to be here let us say E=E2 that means this

curve would shift down because there is nothing else in the Fermi function other than Ef, it is

simply E to the power E-Ef/kt+1/. So this is means that the curve is now shifted downwards

you have a 0.5 coming here and you see now the area under here is 5 plots it means there are

larger number of holes in the valence band.

So graphically it is very clear of course in mathematic you put it will show you the numbers,

one thing which I would like to do is if you shifted this Ef here I have shown it like this it

appears as if the probability is very large because please see this is one because it is 0-1 here

1, this appears as this is 0.2 or maybe this is 0.4 but just put numbers in this Fermi functions

for practical B type material practical N type material.

And you see  what  is  the  kind  of  numbers  that  you get  E-Ef/kt+1  choose  some suitable

temperature set 300k and put numbers and try to plot this, you will be surprised that here I

have shown as it 0.4. This will be very very small number, the probability here is extremely

small which will come out 10 to the power -4, -6 that kind of number little you cannot see

anything like this it will be actually in an actual graph it will be as it.

It  is  almost  0  everywhere  almost  0  and  then  it  goes  like  this  and  almost  0  because  of

occupation  here is  extremely small  at  normal  temperature.  But  we have large number of

electrons  how is  it  possible.  At room temperature if you take silicon then the number of

electrons carrier concentration that is of the order of for Silicon it is of the order of 10 to the

power 10/cc concentration Ni intrinsic carrier concentration.

At room temperature is of this order, but I am saying that the probability is very very small,

how is it possible because n-row of E*f of E, the density of states is very large. In the last

class  I  had  calculated  n the  total  number of  states  from Ec-Ec+0.1Ev as  anybody try to

complete that integral so Ec-Ec+0.1Ev. This I call as N and I would ask you to calculate what

is the number of states.



Number of states was total 10 to the power of 18 I think 2.5*10 to the power of 18 is the

number, please do numerical is very important because there will be numerical in the exam

and more importantly you are handling 10 to the power of -34, 10 to the power of -19, 10 to

the power of – 23, so unless you practice we will not able to do the numerical correctly, every

one of you will get a different answer.

So please  practice  numerical  because  there  are  huge powers  you have  to  handle.  So the

number of states itself is very large and therefore even though the probability here is very

small,  probability  actual  number  is  very  small  multiplied  by  the  number  of  states  it  is

significant did you still of the order of 10 to the power of 10. So this is the distribution of

occupation probability of course we are aware of this.

(Refer Slide Time: 20:10)

I  am just  recalling  on the concept  that  is  essential  therefore the carrier  concentration the

carrier concentration N=row of E*f of E dE let me come N is the carrier concentration in the

conduction band, so this is Ec to infinity I am writing Ec-infinity actually Ec to certain values

some value of the band but I am writing it up to infinity because as I mention to give the

numbers here are extremely small, larger the difference Ec-E here.

Smaller will be the probability that is this term goes to 0, it does not matter you write Ec is it

may be up to 2Ec+2Ev or 1Ev but if already goes to 0 it does not matter whether integrate

from Ec to EC+1Ev or Ec to infinity, it is one and the same that is why I am writing the total

number of career in the conduction band as N=EC to infinity, so substitute here row of E

integral 1/2phy square 2mc/h cross to the power 3/2*E-Ec to the power 1/2*f of Environment



So 1/E to the power E-Ef/kt+1Et, Ec to infinity, this gives us the career concentration before I

carry out the actual  integration  here this  is  actually  not possible  to integrate  analytically,

alright let me continue with this.

(Refer Slide Time: 22:33)

So  let  me  take  out  1/2phy  square*2mc/h  cross  to  the  power  3/2  constant  I  have  taken

out*integral  Ec  to  infinity  E-Ec  to  the  power  1/2  1/+1.  This  can  be  integrated  only

numerically,  but  we can  make  some simplification  you add  and  subtract  Ec  here  in  the

denominator and this multiply divide kt, so this is equal to 1/phy/square twice mc/h cross

squared to the power 3/2.

So I add and subtract Ec and then we put E-Ec E-Ec/kt=theta and Ec-Ef/kt=theta F in the

lower. So this is dt dt=d theta*kT and substitute in the expression further when E=Ec this is 0,

Ec E=Ec then the lower limit is 0 and when is equal to infinity it still remains infinity. So I

have  0 to  infinity  theta  the  power of  ½* D theta/E  to  the  power theta-theta  F/dT theta-

thetaF+1.

So theta is already dimensionless, these are the substitutions to make this substitution and you

see that you get this expression and outside you have 1 kT coming from here and one root kT

coming from this. So you will have kT to the power 3/2. These gives the substitution as E, so

you may have this equal to 1/2phy square82mc/h cross square*kT to the power 3/2* this

integral here is called the Fermi of integral f 1/2 of theta F.



F of theta this is called this last term is called the Fermi of integrity, the simpler Bozeman

approximation but because I have returned the complete expression I thought I will give you

the rigorously correct solution for this is N, there is no approximation in this, so Fermi 1/2

integral. This has to be elevated numerical we cannot this no analytical solution this has to be

evaluated numerical.

So we have 1/2phy square 2mc/h cross to the power 3/2 kT to the power 3/2 is E 1 kT coming

from here, square root of kT and 1 kT is coming from here. So that is why kT to the power

3/2 ok,  theta  and theta  has dimensionless  that  is  why this  E power theta-theta  is  energy

dimension energy dimension theta is dimension less. So this is called the Fermi half integral.

So if you have to actually calculate the carrier concentration for any value of a Ef.

Whether  it  is  highly doubt  or  lowly doubt  does  not  matter  this  is  the  rigorously  correct

solution Fermi half integrity. There are which approximation which are available the Fermi

half integral theories, I will just show you what kind of values are we talking for the Fermi of

integral, just to get an idea we are talking of hundreds or thousands, millions what kind of

number is this.

(Refer Slide Time: 28:16)

This can be half integral where is approximately this showing you approximately. So this is

for  me of ½ integral  of  theta  F verses  theta,  because it  is  already indicated  over  energy

method simply depends on the position of theta F where is the theta and theta is Ec-Ef/kT

which means it simply depends on the position here, so yet Ef=0, this is thetaF=0 this is

approximate number.



Just  to  get  you an idea this  is  approximately  0.1 give  you some idea  that  what  kind  of

numbers are we talking. So this is 0, this is 10, so 0.1 10 power -1, 10 power -2, 10 power -3.

So the numbers are 0, 0 here this is 0 around thetaF=0 around thetaF=0 around 2, 4, this is -2,

4 and so on typical numbers but for the for me thetaF=0 means what Ef is that Ec the Fermi

level has entered the conduction band.

That Ef=Ec thetaF is 0 the Fermi interval is approximately point approximate numbers be this

just to get you numbers are we talking here. So let us say the Fermi function has have just

entered the conduction band. So this is your Ec and Ev and highly dot in a semiconductor so

Ef has also come here then thetaF=0 and this is approximately 0.1. So we substitute 0.2 and

put all the other number here and you get the carrier concentration.

(Refer Slide Time: 31:10)

So this is the exact way of calculating familiar with the Bozeman approximation which is

quite simpler I come to the Bozeman approximation. So what  is the Bozeman approximation

any doubts which one this one yes let it write in terms of 10 power 0, 10 power 1, yes that is

right, become it become 0 when carrier concentration will become 0.

This  10  power  0,  so  please  make  a  correction  there,  the  Fermi  integral  is  0then  carrier

concentration is 0 and this value at this such a high value of theta that becomes 0 yes, so the

Bozeman approximation please correct that normal doped semiconductor if you take an N

type doped semiconductor then Ef may be somewhere here, you take gallium arsenide or

silicon, so this is Eg is approximately of the order of 1.42 for gallium arsenide.



And it has already moved towards the conduction band, let us see the difference here is is

about 0.2, 0.2E I put some numbers because numbers make it more clear that is why use

number.  So  0.2e  let  us  see  the  difference  here  is  because  is  already  moved  closer  to

conduction band because it is a N type material. So N gallium arsenide. The probability of

occupation F of E is given by 1/E E-F/kT+y in the conduction band.

So in the conduction band E is greater than Ec, E is greater than Ec for conduction. This is

valid for both conduction band and valence band, but for conduction band E is greater than

Ec. So if you substitute E here then E-Ef is always greater than for this particular example

that have taken E-Ef is greater than 0.2Ev. At room temperature so E-Ef is greater than 0.2Ev

I am writing this for this particular example that I have taken E-Ef is greater than 02Ev.

And kT at room temperate si nearly equal to 0.026 electron holes, 0.26 electron holes which

means this exponent here is 0.2/0.26 which is approximately 8 is the exponent. So you have E

to the power 8+1 E to the power 8 is a very very large number compared to 1 E to the power

8 is much larger  compared to 1 and you can neglect  this 1 compared to E power 8 and

therefore this I can approximately equal for E-Ef much greater than kT.

I  can neglect  1  in  comparison with  this  and I  can  write  this  is  equal  to  E-Ef/k.  This  is

Bozeman approximation.  In Bozeman approximation the Bozeman approximation is valid

when E-Ef is much greater than k, when the when E-Ef is much greater than kT the 1 is

neglected in comparison to this number and therefore we write this has approximately equal

to E-Ef/kT.
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If you substitute this then that integral is easily integrable this is true for both conduction

band and valence band the only requirement is E-Ef should be much greater for Ef-E for the

valance band Ef-E should be much later than kt. Then N=all those constants 1/2phy square

2mc/h cross square to the power 3/2*integral Ec to infinity, we had row of E which is E-Ec to

the power 1/2* E to the power E-Ef-E-Ef/kT.

Let me erase this is not required reviews of the top, this is now integrable is easily integrable

so E-Ef/kT. So how to integrate this for the same procedure add and subtract Ec some of you

would have done this  already, so please so E- this  will  become E- -E-Ec/kT*E-Ef-Ec/kT

added and subtracted for this term and then we can put this as x that I will have this is equal

to 1/2phy square 2mc/h cross square let  me complete  the algebra here and integral  0 to

infinity.

As before I am putting this equal to X therefore at E=EC lower limit it is 0, so 0-2 infinity

this will be x to the power 1/2 and V to the power –x Vx* this term outside ok, let me keep it

here E to the power Ef-Ec/kT any other term kT, kT to the power, so dE will contain 1 kT,

1kT to the power 1/2, so kT to the power 1/2 right. So kT to the power 1/2.
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So simply this you should be getting an expression like this mckT/2phyh cross square to the

3/2*E to the power E2F-Ec/kT. Please simplify this and check that N=2*mckT/2phy h cross

squared to the power 3/2*E to the power F/kT. So this is under the Bozeman approximation.

Exactly like this if you follow for the valence band you get expression for P=2*mVkT/2phy h

cross square to the power 3/2*E to the power Es E to the power Ev-Ef/kT. This is sometimes

denoted as mc for the conduction band and this is denoted as NV, please see that it contains

everything is constant except the effective mass.

Effect mass Nc in the case of Nc and effective mass NV in the case of NV in the case of nv if

Nc=1Mv both constant of the same. This is a very large number if you put numbers you will

see that this will be 10 to the power of 18, 10 to the power of 19 for very large number this

part, sometime you get into doubt whether it is here Ef-maybe you are made a mistake and

Ef-Ec or Ec-Ef.

How do you verify Ef-Ec so this is called the conduction band under Bozeman approximation

which means my Ef is somewhere here this is Ec, this is Ef under Bozeman approximation.

So Ef-Ec is negative Ef is smaller, Ec is larger, so this is negative. Therefore this quantity will

be E to the power negative which means a factor less than 1 and the factors to be less than 1

because the carrier concentration that I am talking about the order of 10 to the power of 10,

10 to the power of 12.

And if  this  number is  very large 10 to the power of 19 naturally  this  number should be

smaller much smaller than 1 and therefore it is correct that Ef-Ec a cross check a quick cross



check sometimes by using a negative sign or something you would have plotted this as Ec-Ef.

If this become Ec-Ef is a positive number much greater than kT. So this you also give E to the

power of 8, E to the power of 10 which is a very large number. This is correct alright. I will

stop here.


