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Good morning and we start with lecture 2 energy bands in solids as I mentioned our objective

will be to review the essential semiconductor physics. In the last class we discussed about the

subject matter.
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The subject matter of semiconductor optoelectronics comprises of the deals with devices and

phenomena and phenomena which involve interaction of optical processes with electronic

processes.  Therefore  this  will  inter  involve  study  of  optical  and  electrical  properties  of

semiconductor  optoelectronic  materials.  Optical  and  electrical  properties,  it  will  involve

interaction of a stud of interaction of photons with electrons and holes in semiconductor.

The technology will further involve design and structure of devices and of course fabrication

technology, that is device fabrication technology. In this course we will consider these three

aspects including design and structure of the devices, their performance, characteristics of

devices,  but  not  the device  fabrication  technology because there are  other  courses which

cover device fabrication technology.



So these are the three aspects which we will cover in this course. So we start with the first

one that is to study optical and electrical properties of semiconductor optical and electrical

properties. So we start with the formation of energy bands all of you would have studied

about this. So I am just recalling formation of energy bands in semiconductors.

So most of the semiconductors of practical importance are crystalline in nature most of them

all  the binary semiconductors that have written Silicon Germanium all are crystalline and

most of them are also are characterized by the cubic lattice.
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We may have different structures like diamond structures, zinc line structure, but most of

them are characterized by a cubic lattice.  In cubic lattice as you are aware that there are

simple cubic, body centred cubic BCC and FCC face cantered cubic. So simple cubic if you

draw a cube, the atoms are located at the corners of this cube. So naturally there are 8 atoms,

8 corners simple cubic.

But as you know the entire crystal structure each cubic cell here is shared for example there

are further cubes on this side, further cubes on this side, so every atom here is shared with 8

other cells and therefore the contribution of this atom per sale is one eight and there are 8

atoms forming 1 cubic cell here and therefore number of atoms per number of atom per unit

cell is equal to 1. If you take a body-centred cubic then there is one more atom at the centre

here.



And therefore number of atoms for BCC, number of atoms per unit cell si 2. If you take face

centred cubic that means as you can see it comprises of 6 phase 2 up and down, 2 on the sides

and 2 on the other side. So there are 6 faces, at the centre of each face if you wish you can

draw another one another diagram. So these 8 atoms are in at the 8 corners plus on this face if

I consider this phase 1 in the middle of this face.

The first phase here, second one here, each face there is one atom here and so on, so we have

6 atoms sitting on six faces. In addition to the 8 atoms in the corners, but each face is shared

by 2 cells on 1 on this side and 1 on this side which means every cell the atom contribution

for sale is half per face. So half*6 pieces, so we have 3 additional atoms which means for

FCC we have 1 that is 1/8*8+1/2*6=4, number of atoms per cell is 4.

Three coming from the 6 faces and 1 coming from the corners. So number of atoms per unit

cell  is 6, is 4 now. Now why do I need this number will come to know in a minute my

objective is to have an estimate of number of valence electrons. So to know the number of

valence electrons I must know the number of atoms per unit cell and number of electrons per

unit cell.
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So I  want  to  calculate  how many  number  of  atoms  are  present  per  unit  volume  of  the

material. So simple engineering estimates so you take the cubic cube again, so one atom if I

take  simple cubic SC simple cubic,  then 1 atom per  cell,  I  want  to  finally  calculate  the

number  of  electrons  or  density  of  electrons  which  means  number  of  electrons  per  unit

volume, number of valence electrons per unit volume.



Because we would require the carrier concentration to determine the electrical properties and

therefore  I  am starting  with  fundamentals  in  a  semiconductor  typically  the  inter  atomic

spacing that is inter atomic spacing A is anywhere in the range 3 to 7 angstrom  3  is the

interatomic  space,  this  one  or  this  one  approximately  of  that  order.  If  you take  gallium

arsenide for example it is about 5.65 angstrom.

So 3-7 angstrom, so if I want to estimate what is the volume occupied by 1 unit cell let macro

environment take this 5 angstrom ok, some intermediate value just an estimate 5 angstroms

which means what is the volume of this, the volume is 5*5 angstroms, so the volume of unit

cell which is equal to 1025 angstrom cube. So that is equal to 1 angstrom is 10 to the power

of - 10 meters or 10 to the power of - 8 cm.

So this is 125*10 to the power of -24 cc or centimetre cube is the volume, volume occupied

by 1 unit cell, what is our interest is to find out the number of atoms per unit volume. So what

is  the  number  of  atoms  per  unit  volume.  Therefore  number  of  atoms  per  unit

volume=1/125*10 to the power of -24/cc. So this is nothing but 0.8*10 to the power of 22/cc,

0.8*10 to the power of 22/cc or the number of atoms per unit volume is of the order of 10 to

the power of 22/cc.

Number of atoms per unit volume in a semiconductor is typically 10 to the power of 22/cc. If

each  atom contributes  1  valence  electron  then  the  number  of  valence  electrons  per  unit

volume is of the order of 10 to the power of 22, what is the number of valence electrons

typically that we have, say it is a quick calculation to get an estimate. So I would like you to

have this kind of practices to estimate very quickly starting from fundamentals.

So number of atoms, if you take silicon for example you know that the atomic number of

silicon is 14, Germanium the most widely used semiconductors atomic number is 32, gallium

31, and arsenic 33, atomic number z. So if you write the electronic configuration this is 1S2,

2S2, 2P6, 3S2, 3P2, you see 14 valence shell by definition is the outermost shell which is

either field or on field but the outermost shell where electrons are occupied.

So 3S2, 3P2, so there are 4 electrons in the valence shell, so 4 electrons, that is why it is in

group 4 right germanium 32 1S2, 2SS2, 2P6, 3S2, 3P6, 3D10, 4S2, 4P, you see the fourth



shell is the outermost shell and again you have 4 valence electrons. If you see gallium here it

is 31, it has the same structure, same electronic configuration, but 4S2 and 4P1. So this has 3

valence electrons, this has 4, this has 3 valence electrons.

And as you know that gallium is group 3 element, arsenic on the other hand will have the

same configuration of this here we have 4S2, 4P3, so 5 valence electrons, arsenic is in group

5, Silicon,  Germanium, gallium arsenide yesterday as mentioned is a 3,5 compound very

important semiconductor in of optoelectronics. Therefore 1 atom has in this case 5 valence

electrons we have 3, here 4, and so on.

In other words therefore the number of valence electrons per unit  volume is this  number

multiplied by number of valence electrons per atom which means in general n the number of

electrons in the valence shell is per unit volume is of the order of 10 to the power 22 to 10 to

the power of 23/cc ok. Let me come to the second issue.
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So  I  have  in  this  discussion  I  have  made  use  of  the  fact  that  most  of  the  useful

semiconductors are crystalline of course there are what first semiconductor but most of the

useful semiconductors in optoelectronics are crystalline in nature. Let me use another fact

that our topic as you can see is energy band in solids.
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So solid is a state of matter is basically collections of atoms and atoms comprise of a central

positively charged nucleus and negatively charged electrons. The motion of constituent of an

atom are described by the quantum mechanics, the laws of quantum mechanics in particular

the motion of constituent are described by the Schrodinger equation.

(Refer Slide Time: 17:56)

The spelling actually either you have to put two dots or Schrodinger equation, I do not know

how many of you are familiar with this, but basically Schrodinger equation si defined by H

shy=E shy  where  H  is  called  the  Hamiltonian  which  means  it  is  basically  total  energy

operator  which means it  is  an operator  corresponding to the kinetic  energy and potential

energy which means it corresponds to p square by 2 m+V.



Where P is the momentum, M is the mass and V is the potential energy. If you replace this

moment  I'm  here  by  the  corresponding  momentum  operator  part  of  the  basic  quantum

mechanics momentum operator which is -IH cross dell and substitute here then you will get

the Schrodinger  equation.  So this  gives you H cross square by 2m with minus sign*dell

square+V.

So this is H, multiply this by shy the wave function which is equal to E shy where E is the

energy Eigen values, shy are the Eigen function and E are the energy Eigen values, there

could be more than one Eigen energy values and therefore E representative. So this is nothing

but the Schrodinger equation which you can rewrite you can rewrite in the form delivery

square shy+2Mi H cross square*E-V shy=0.

For every given potential variation V you can find out an energy Eigen value which gives the

energy of the particle under consideration. And shy being the wave function H is Planck's

constant, H cross is H/2phy, H is Planck's constant and M is mass of the electron. If you are

finding energy of Eigen values of electrons then M is the mass of, if you can an isolated

atom.

For example hydrogen atom I am very quickly recalling all the basics that you have already

studied. If you take the hydrogen atom it has a central positively charged protons here and

electrons surrounding it  as a cloud. So the potential  energy V is given by Q1Q2/r which

means in the case of hydrogen Q1 is this, Q1=1E, the quantum of electric charge and Q2 is

-1*E charge of an electron therefore Q1Q2/r is -E square/r. V=-V square/r, in CGS system

you have an additional factor which is 4,5 0.

If you substitute this V here you can find out the energy Eigen values for hydrogen atom.
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So this gives you the solution for hydrogen atom gives you energy Eigen values which are

En=-m E to the power 4/8 actually 0 square, H square*1/n square. These are the energy Eigen

values where n=1, 2, 3, 4, etc. correspond to the principle quantum number 2 or energy levels

of a hydrogen atom. Since n is  discrete  it  immediately means that  En is  discrete,  so for

hydrogen atom if you put values for this.

These are all constant, mass of electron, charge of electron, permittivity of free space, H is

Planck's constant. So this will come out to be -13.6*1/n square Ev. If you put n=1 that is the

ground state then you know that ground state of hydrogen atom is -13.6 EV is energy of

hydrogen atom. You may be wondering why I am discussing this. So the point is if you take

an isolated atom it is characterized by discrete energy levels.

So this is n=1, n=2, iniquity we actually the separation today increased because and square is

in the dinner it's a n square it goes as health square and finally it goes 20 which pen and

becomes very large this was 200 is the free state walking stick so as you go here they come

closer and closer and closer and finally that is the vacuum stick the vacuum state here we are

-13.6 EV states of the atom do you have nucleus which is surrounded by various orbits.
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I  am just  showing randomly some orbits  and energy corresponding to  various  shells  and

energy corresponding to various levels or what is given here. So the ground state of hydrogen

atom is -13.6. What we are interested is from this discussion is to see that an isolated atom is

characterized by discrete energy levels, this is the point. So I have taken just an example

which already you have studied is the hydrogen atom.

(Refer Slide Time: 26:06)

Let me recall the argument again matter is a collection of atom and solid is densely packed

collection of atoms. If you to take a gas at low pressure the interatomic separation you know

that if you take a container, a gas at low pressure then the gas molecules are continuously in a

state of motion. The average interatomic spacing depends on the pressure of the gas, lower

the pressure, largest is the interatomic spacing.



So typically the interatomic spacing A, if I want to call the interatomic spacing A is anywhere

from the of the order of 10 or 100 angstrom to 1 micron, typically the interatomic spacing

that is between atoms in a gas, what is the size of an atom, the of an atom there is no fixed

size of an atom, but the size can be estimated if you know that the ground state of hydrogen

atom here has a radius here which is called the bohr radius is 0.52 angstrom which means the

size is typically about 1 angstrom.

You can say that the size of an atom is approximately 1 angstrom, of course higher orbits will

be  that  is  higher  electrons  will  have  a  larger  spatial  extent,  but  the  size  is  typically  1

angstrom. When the interatomic spacing if you now considered 2 atoms 1 atom sitting here

and 1 atom sitting here, the interatomic spacing here the separation between these. When this

separation D is large then the electrons here do not see any effect due to the electric field.

The electrostatic field here the field here does not experience the field due to the other atom

because it is quite far there is hardly any interaction. But if they start coming closer then the

field here gets perturbated because of the field here or the electrons here starts seeing the

second atom or they get influenced by this. The influence leads to splitting of the energy

level, the energy levels which were originally discrete.

If you start bringing 2 atoms together then the energy levels split into 2, the outer walls are

the more affected one, because the inner electron shells are inside here they are not seeing the

influence of the other atom, the outer electron I am just showing circular orbits like this as

you can see the outer orbits or outer electron start seeing each other or the interaction is

stronger there for the perturbation felt by the outer electron is more.

And  therefore  you  start  seeing  splitting  of  the  outermost  electron  energy  level.  This  is

considering 2 2 atoms, if you have a large number of atoms the levels here split into multiple

levels. First point when 2 atoms are well separated there is very little interaction between

them  and  therefore  the  entire  collection  of  atoms  are  characterized  entire  collection  is

characterized by discrete energy level.

Because each atom has this energy level, therefore the entire collection is characterized by

this  discrete  atomic  energy levels,  but  if  you start  bring them closer  and closer  then the

energy levels get perturbed or splitting of energy levels take place, allowed levels become



more than one corresponding to 1 you now have several energy level and therefore if the

number increases this goes over to a back.
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So they go over as you decrease the interatomic spacing the energy levels this is illustrated by

a nice diagram which you generally  seen in  books.  So this  is  the  interatomic  spacing A

interatomic spacing versus the energy. So when the interatomic spacing is very large. So let

me put some number ok I will put the number ok 1 angstrom, 10 angstroms, this action sees

energy E.

So  when  the  interatomic  spacing  is  sufficiently  large  you  have  energy  levels  which  are

discrete. They are not equally spaced I am just qualitatively illustrating as you reduce the

interatomic  spacing  the  levels  start  splitting,  you could  have  seen  this  diagram in  many

books, so what you have is a range of allowed energy level,  a quality to explanation I am

offering there are so semiconductors have an interatomic spacing approximately 5 angstrom.

So if you go here let us say 5 angstrom, what are these, these are the allowed energies, we see

these  levels  correspond to allowed energy value  has  the  interatomic  spacing reduced the

allowed  energy  values  become  more  that  is  the  result  the  range  of  energy  values

corresponding to each level, a range of energy balance and as you reduced it further it started

splitting further.

Hence  in  for  some values  they  may also  start  overlapping with each other,  typically  for

semiconductors where interatomic spacing is about of 5 angstrom, you can see therefore in



this energy access if I draw the range of energy values which are allowed please see this is

the range of energy values allowed here. This is the range of energy values allowed here and

this is the range of energy allowed.

So what do I have, I have a range of energy values range of allowed electron energy values

inside  semiconductor  and this  is  nothing but  the  bands.  So what  you have  are  the  band

diagram that you see this basically this and the separation here where there are no allowed

states correspond to the forbidden gap. I have written EG but please remember the highest

band which is completely filed is called the valance band.

The highest  band which is  completely  filled  is  the band and the next  band is  called  the

conduction band and the energy separation of the forbidden gap between the valence band

and the conduction band is the band gap. There may be many more bands but no electrons

there and therefore we are not concerned with them.
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So a semiconductor is characterized by energy bands. I have given a qualitative explanation

here, let us make it little bit more quantitative, little bit more rigorous and see whether this is

really true or not. Those of you have study solid state physics, you have studied the kronig

penney model. If you consider a 1 D lattice, so what I am showing these are the atoms which

are separated an interatomic spacing of A.

Consider a 1 deluxe if you consider an isolated atom single atom what will be the potential

energy variation  V=-Q1Q2/r. So if  you plot  the potential  energy variation where r  is  the



distance from the nucleus then the potential energy variation looks like this, it is 1/r variation,

r=0 here, at the nucleus r=0, so this is the potential energy variation, this is 1/r variation and

minus, that r=0 it tends to infinity.

That is why you see I am sure all of you have seen this potential energy variation. This is for

1 atom. If you have a series of 1 D lattice of periodically placed items then we will have a

corresponding potential energy variation. If you solve this problem like in hydrogen atom you

will get,  so this is the potential  energy here V, and you will get different discrete energy

levels, permitted values of energy level.

So this is P1, P2, P3 are permitted values of energy levels. These are the discrete energy

levels of the isolated atom. But now what I am showing is a 1D lattice separated by A. when

you have an isolated atom like a hydrogen atom with one electron it is exactly solvable you

have analytical solutions, but if you have many atoms with many electrons then it becomes a

multibody problem.
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And you cannot have analytical solutions for many such problems. But you can solve them

numerically or you make certain approximations. So you may be familiar with kronig penney

model and just recalling what you have studied, those of you have not studied do not worry

basically  we are interested in the concept  and the result.  Finally we are interested in the

concepts because this is not part of this course.



So we will not going to the analysis of this, but in kronig penney model what he did was he

approximated  this  potential  variation  by  a  potential  well  a  rectangular  potential  well,  a

periodic potential well and then you have this periodic potential well, the potential energy

variation here, this is the and this is the separation between them. If you consider a single

potential  well  this  is  a  particle  in  a  potential  box  problem  we  study  even  in  first  year

undergraduate engineering.

If  you take  a  potential  well  here this  supports  analytical  solution,  this  supports  different

discrete Solutions even the ground state, the second statement and it may support depending

on the height and the width it  may support many solutions.  For simplicity  let  me take a

potential well which supports only one solution. So there is one solution here E1, one allowed

solution which is the fundamental mode, fundamental solution or fundamental state which is

the ground state.

And if you see the wave function it typically looks like this, it has a oscillatory behaviour

inside the well and evanescent behaviour outside the well hmm hmm. This is the ground state

of particle in a potential well a single well. If I bring a second well close to this reasonably

close to it, so that they start interacting if the separation here, this is the separation let me call

this as D the separation.

If this or let me call this as A, the cell is of width D and separation A, if A is sufficiently large

much greater than D then the 2 wells are non interacting wells. So this will have one solution

here, this also has the same solution if it is identical size and identical height then this also

has a solution corresponding to the same energy value for non interacting well.

Two potential wells which are non interactive or you can imagine as it as two atoms which

are  well  separated  not  interact.  So this  is  the potential  well  which is  approximating  this

potential actual potential where is like this, but it is approximated by the box equal and box

because this has analytical solutions easily you can solve this. If you when A is much larger

than D there is no interaction between them.

But if A starts reducing, so each one of these is characterized by the Eigen state here the

fundamental solution of the ground state when you start reducing this that the evanescent tail

of this field here, this site interact with the evanescent tail of the shy here. If I want to call this



is  shy1  and  shy2.  We are  actually  same  states  but  the  tails  start  interactive,  they  start

overlapping which means there is an interaction between the wells.

This is original when A was much larger than D they were non interacting wells, when A

started reducing this started interacting, when they start interacting if you solve this double

well problem then you will get 2 solutions corresponding to this interacting double wells,

now you get 2 solution, that is one here. This was the original level let us say this was the

original level E1.

Now the new values are one about that and 1 below. So there are 2 allowed energy values,

you have two solutions earlier there was only one solution, now you have two solutions. I do

not  wish  to  go  into  the  details  because  they  are  not  symmetric  solutions,  antisymmetric

solutions and so on. However what is important is if there was only one energy level initially

when you have 2 interacting wells there are two solutions.

(Refer Slide Time: 45:46)

If there are 3 interacting wells there will be 3 solutions and if there are end interacting wells

there will be n solutions, n allowed states and therefore if I plot so what I am going to plot, let

me erase this if I plot the number of wells here this is number of wells versus energy allowed

energy E, this is some state I am discussing about E1. So this was my E1 original E1 when I

had only one value of energy I had this. This is E1.

When I have number of wells 2 then I have 2 allowed values 1 slightly below and another

slightly above. So 2 allowed energy states, if I have 3 wells please see the relevance I have



considered a 1D lattice where atoms are sitting along a line. They are like interacting atoms.

So  equivalently  each  atom  is  characterized  by  a  potential  well.  So  I  have  a  series  of

interacting potential wells.

And  I  am now writing  depending  on  the  number  of  wells  how many  energy  states  are

permitted. So the allowed energy state for this 3 is here, 1 above, 1 below, when I go to 4 then

it is here 1, 2, 3, 4. This is exactly numerical is horrible, this is not so solve this Schrodinger

equation for the 4 interacting wells you will get the 4 solution. These are solutions which are

actually you can calculate the solutions.

As the number of cells increase, so you go to 5 it becomes 1, 2, 3, 4, 5 and so on. So the

number of cells increase and when the number of cells become very large some end then you

see that this saturates to very large number of allowed states, the number of allowed states

here, we see that the discontinued here in the access because the number is very large there I

have shown discontinuity.

Let me show this again 5 and this is number of this is some large number N, there are large

number  of  cells.  So  this  varies  something  like  if  I  draw  it  leads  to  saturation  and  this

separation here delta E is the width of the energy band, the corresponding width of the energy

band  that  you  get,  now there  is  a  range  of  allowed  energy  values  because  you  have  n

interacting atom.

There is the range of allowed energy values, this delta E comes out to be the same that you

get from kronig penney model.  This calculation was not from kronig penney model,  this

calculation is from quantum mechanics. So the quantum mechanical calculation gives this

separation as the same which you get from the kronig penney model.

So what is the point in this discussion is that when you have a closely packed arrangement of

atoms periodically  arranged atoms in a lattice.  They are characterized  by discrete  energy

bands. This is corresponding to 1 energy level, similarly for the next energy level if I had the

next level E2 there are also I would have got is splitting into bands corresponding to E2.


