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In the last class we discussed about optical joined density of states row of mu and the probability

of emission f e of mu or PE of mu and probability of absorption f a of mu we want it to find out

the number of emission finally our objective is today in this class we will discuss about rates of

emission and absorption. And our objective is rates of emission and absorption refers to number

of emission or absorptions number of emission or absorptions per unit volume of the material per

unit time.

Because once we know this number then multiplied by h mu will give us the power energy per

unit  time  gives  us  the  power  output  from this  device  or  material.  So,  the  number  of  unit

emissions per unit volume this is the density of optical joined density of states that is number of

states evaluable for photons of frequency mu to interact with so row mu is the number of states.

This  is  the  emission  probability  and  therefore  number  of  states  multiplied  by  the  emission

probability will give you number of emissions.



So, row of mu into f e of mu will give you number of emissions per unit volume. Because this is

per  unit  volume  and  therefore  the  rate  of  spontaneous  emission  row  rate  of  emission  or

spontaneous emission or a speed is proportional to row mu into fe of mu or a sp standing for

spontaneous emission why it is spontaneous emission I will come in a minute. So, this I can

write as equal to a rate constant A into row of mu into f e of mu.

A is the rate constant and you can show that this is nothing but one over tau or where tau or is the

radiative the combination lifetime. So, this is the radiative recombination time or recombination

time for radiative transitions recombination time radiative recombination time is recombination

time for radiative transitions why I mean radiative transitions is the following. If you see the EK

diagram as you can see I keep drawing this many times.

So, EK diagram a photon an electron which is in the conduction band can make a downward

transition in energy to the valence band giving out spontaneously on its own. A photon of energy

h mu it is also possible that this recombination may not result in the emission of a photon at all.

This recombination is also possible through phone on phone on emission vertical transitions are

also possible with phone on emissions.

And therefore in general or this may be sitting here it makes an oblique transition. But the point

is a transition from conduction band to valence band may take place with emission of a photon or

without  emission  of  a  photon.  Therefore  total  number  of  spontaneous  downward  transitions

comprise  of  radiative+non-radiative  transition.  So,  radiative+non-radiative  transition  so,  total

number here total number of spontaneous transitions spontaneous.

Because it is on its own it is coming down spontaneous transitions would comprise of radiative

and non-radiative components. And therefore correspondingly the total rate constant if I denote it

as T. Then this will comprise of a radiative constant A+a non-radiative constant which I denote

as S total rate constant equal to radiative constant+non-radiative constant here. The rate constant

therefore this is inverse of time it is rate constant therefore it is inverse of time. So, this is written

as one over tau or +one over tau nr.
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In other words T is equal to 1/tau =1/taur+1/tau nr where tau is the life time of the transition or

recombination time spontaneous recombination time so, this is recombination time.
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This is radiative recombination time this is non-radiative recombination time the relation is 1

over tau=1 over taur+1 over tau nr. We will discuss about this little bit more a little later but at

this point I will just make a statement that in direct band gap semiconductors tau are is of the

same order as tau nr which means the rate constant A is of the same order as the rata constant S

which means the spontaneous emission.



This is spontaneous emission rate of spontaneous emission of photons or sp of mu of frequency

mu. If this is equal to this it means out of the total recombination 50% of them result in emission

of photon. And 50% of them result in emission of no photon that is no emission of photons. If A

equal to S if taur equal to tau nr it means that A equal to S total  rate constant is this which

comprises of these two radiative non-radiative.

Therefore in a direct band gap semiconductor the probability of radiative transitions is equal to

nearly equal to probability of non-radiative transitions almost every electron combining with a

hole 50% probability of emission of a photon. And 50% probability of no emission of photon but

in the case of indirect band semiconductors tau nr is much smaller than taur. And therefore S is

much greater compare to A.

We will  put  some  numbers  a  little  later  when  we  go  to  materials  therefore  non-radiative

transitions dominant much more over radiative transitions. It is the that is the important of taur

and tau nr. So, I want to bring at this state and an knowledge with atomic systems because most

of you would an elementary theory of lasers. Most of you are familiar with a elementary theory

of lasers. You will see that there is a complete one to one a knowledging and then I would like to

proceed further see atomic system.
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If you consider a two level atomic system with N1 number of atoms in the ground state and N2

number of atoms in the excited state with energy event and energyE2 and energyE1. Then there

are number of atoms large number of atoms in the ground state which is given by the borgement

distribution. There are few are number of atoms here the three basic atomic processes are the

same interaction processes.

An atom sitting here can make spontaneously a downward transition giving out an emission of

photon h mu. The number of transitions N2 is the number of atoms per unit  volume of the

material the number of transitions downward transitions spontaneous transitions is proportional

to the number of atoms which are sitting here. And therefore the rate of transition spontaneous

transitions is proportional to if I am looking at spontaneous emissions.

Then this is proportional to N2 or rate of spontaneous emission is equal to A times N2 there can

be stimulated emission in the presence of photons of energy h mu. If there is a energy density u

mu of photons of energy h mu u mu is the energy density which means number of photons per

unit  volume  of  frequency  mu that  is  if  you  have  N  number  of  photons  incident.  Then  nh

mu/volume of the material V is unit.

So, this is equal to u energy density so, if u mu is the energy density then rate of stimulated

emission is equal to a constant B into N2 into unit. And rate of absorption is proportional to the

number of atoms in the ground sate and therefore rate of absorption is equal to B into N1 into

unit. Please see when there is an energy density when there are photons of energy h mu here.

They can stimulate downward transition but they can also cause absorption upward transition.

So, the absorption depends on the energy density u mu and the number of atoms in the ground

state. Emission depends on the number of atoms N2 here but also on the energy density u mu that

is  why we have this  kind of expression to  make it  to incorporate  to more features into this

actually atom interacts with radiation over a certain range of frequencies.

So, there is a line shape function g mu atomic line shape function rows of few have studied basic

laser physics line shape function. If you have not studied does not matter g mu and therefore



every where this rsp will be a function of mu and N2 into g mu, g mu gives as the strength of

interaction at the frequency mu that is any atomic system interacts with radiation over a range of

frequencies.

Because of various mechanisms which are called line broadening mechanisms this g mu is the

line shape function which determines the strength of interactions at a particular frequency. So,

every where you will  have an additional term g mu that is N2 into g mu N1 into g mu so,

spontaneous  emission  at  a  frequency  mu  is  proportional  to  N2  into  g  mu  and  A is  the

proportionality constant.

So, these are the three expressions that will have for a non-degenerate system this for absorption

and emission B is the same otherwise you have to write here B21 and B12, for non-degenerate

system it is the same. And these coefficients A and B are called what are they known as these are

known as the Einstein coefficient. So, A, B are the Einstein coefficient A is equal to one over tsp

where tsp is the spontaneous emission life time.

You can write this as dN2/dt=–AN2 into g mu and simplify and you can show that A is equal to

one over tsp where tsp is the spontaneous emission life time. In atomic physics also there is a

relation that is life time tau is equal to one over tsp+1/tnr non-radiative transitions. So, tsp here

request to spontaneous emission but also there can be an atom come down without even giving A

photon.

And  they  are  called  non-radiative  transitions,  so  it  is  the  same  relation  that  we  have  in  a

semiconductor that one over tau lifetime is equal to one over radiative life time+one over non-

radiative life time. So, A is given one over tsp this is called spontaneous emission life time.
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And the relation between A and B relation between the Einstein coefficients is given by A/B is

equal to 8pye h mu 2/cq or in a medium of refractive in the same it is (c/n) cube this is the

relation between the Einstein co efficient A and B. And A is equal to 1 over tsp why I am writing

this  is  because the  coefficient  that  we have in  semi  conductor  A and d also  have the  same

relation.

So the rate of therefore this I have written for the atomic system and now I write for in the semi

conductors and then you can see what is the comparison from here in an atomic system and in

semi conductors. Here we are writing N1, N2 are number of atoms, here we are dealing with

electrons and holes.
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But you see the similarity and the relations, so for semi conductors R sp of mu is equal to the

constant A into row of mu into f e of mu is this spontaneous emission. Stimulated emission rst of

mu is equal to constant B actually it is A dash and B dash because the numerical value is not the

same but the relation is the same. So, B into row of mu into f e of mu into energy density u of mu

and r absorption of mu is equal to B into row of mu and now f a of mu into u.

And A and B have the same relation here in this case A is the spontaneous emission life time here

A  with  A =1  over  tau  r  radiative  recombination  lifetime.  There  are  techniques  these  are

measurable  parameters  you will  see  ultimately  that  everything  will  be  in  terms  of  lifetimes

because  lifetime  is  a  measurable  parameter.  If  time  permits  later  on  I  will  discuss  the

measurement technique how one can measure the lifetime.

So, A is equal to it is completely 1 to 1 correspondence and what do you see that if you replace

n2 into g mu this tells you effective number of atoms available for the transition and this tells

you the same thing. So, it is row mu into f e of mu is replaced by this otherwise it is the same.

So,  these  are  the  rate  of  spontaneous  emission  stimulated  emission  and  absorption.  The

difference between stimulated and spontaneous is the energy density.



Spontaneous emission does require any radiation to be present it is spontaneously makes the

downward transition. In stimulated emission you need radiation to be present and therefore u mu

here refer the density of states. So, u mu here refers to the energy density in the medium.

(Refer Slide Time: 19:33)

So, in stimulated emission if I want to illustrate stimulated emission then I have photons coming

here of energy density u mu and electron which is here making a downward transition and leads

to, so if there are more number of photons coming here it can induce more number of downward

transition that is why stimulated emission rate is proportional to u of mu larger the number of

photons which are incident here larger will be the possibility of stimulated emission.

And the coefficient here is the, so these are the Einstein coefficient they are the same as this not

in magnitude but in nature and the relation is the same in semi conductors. So, let us find out first

the rate of spontaneous emission first we will discuss spontaneous emission because as I have

already mentioned spontaneous emission is the basis of operation of LEDs. So, we will discuss

the rate of spontaneous emission.
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We will find out what is this rate we have written an expression here but let us see what is that

rate. So, rate of spontaneous emission rsp at the frequency mu because the density optical joint

density depends on the frequency mu rsp of mu is equal to 1/tau r into row of mu density optical

joint  density  of states 1/pie  h cross square into twice mr to the power 3/2 please check the

expression into h mu- eg to the power half.

So, this is row of mu, so a this is row of mu multiplied by f e of mu probability of emission. Let

us see the probability of emission f e of mu is equal to if you recall first at thermal equilibrium

let us see a thermal equilibrium. I want to find f e of mu, so we have a semi conductor the Fermi

level is somewhere I do not know P type or N type I am just taking semi conductor not taking a P

and A junction yet.

And this is Ec a semi conductor in thermal equilibrium f e of mu is equal to f of E2 that is

probability of having an electron at state E2 into probability of having a hole at state E1 1- f of

E1. So, substitute f E2 is 1/1+E to the power E-f so E2-Ef/k into this one will give me E to the

power E1-Ef/Kt in numerator/1+E to the power E1-Ef/ kT. Let us approximate a little bit Ef is

here E1 remember that E2 is a energy level here in the conduction in the valance band in the

conduction band, so E2 is an energy level in the conduction band E1 is an energy level in the

valance band here.



So, you can see that this gap that is E2-here is much greater than kT at room temperature this is

the bores 1 approximation E2-Ef is much greater than kT because is about 0.025 ev therefore just

like we did bores 1 approximation for carrier concentration under the bores 1 approximation E2-

Ef is much greater than kT therefore the exponent is a very large number, so I can neglect to 1

with respect to E to the power large exponent which means this second term here is in first term

here.

The first term this one is simply approximately that you write approximately I want to see what

kind of numbers are there approximately equal to E to the power so only this one now it is – goes

to the numerator E2-Ef/kT. The second term here is approximately equal to E to the power E2-

Ef/kT. What about that this term this is a large number E1-Ef/kT is a large number, so you can

neglect but it is a large number but E1if less than Ef  please see E1 here Ef is here.

So, E1-Ef  is a negative number, so it is a large but negative number therefore this is close to 0

and therefore I can write this term is close to 0, so I neglect this, so what we are left with is only

E2 to the power E1-Ef/kT. And what is that you see +Ef and –Ef/kT that goes off, so you are left

with E2 to the power of –E2-E1, so this is therefore this is approximately equal to E to the power

–E2-E1/kT. E2-E1 is what h mu, so this is equal to okay let me erase this.
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So what we have got is f e of mu is equal to E to the power I should not have erased E to the

power- let me write again E2-Ef/kT into E to the power E1-Ef/kT which is equal to f e this term

is approximately equal to because I have made approximation here this is equal to Ef Ef goes and

we have e to the power – h mu/kT. So, f e of mu is e to the power –h mu/kT.

You can put some number if you are talking of visible photons corresponding to visible light h

mu is about 1.5 or 2 ev and kT is extremely small compare to that therefore this is a very large

number e to the power –this, so f e of mu is an extremely small number probability of a mission

at thermal equilibrium is extremely small. Suppose I was in quasi equilibrium we were in a state

of quasi equilibrium.

So, we will substitute this here in a minute but just before I proceed suppose we were in quazy

equilibrium which means let us say we have pump.
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So, this was our original here we excite this medium by maybe by illumination maybe by current

injection whatever reason so that the Ef separate out 2 efs come now, so we have 1 e f for the

conduction band Efc and Ef for the valance band, so Efv, so I erase this thermal equilibrium case,

so this was thermal equilibrium.

(Refer Slide Time: 29:50)



Now this is in quasi equilibrium. So, what difference would we see please see I have it is not

large enough that Ef and Ec have merged here still this gap is sufficiently large between E1 and

Ef, so that I can still apply (()) (30:03) approximation. So, what difference in this expression will

come, in this we will have Efc and here we have Efv that is the only difference Efc, E2-Efc/kT.

And E1-Efv/kT, please write this expression again, what do we then have earlier Ef Ef was it

cancelled  each  other,  now  we  have  this  multiplied  by  e  to  the  power  Efc-Efv/kT.  So,  the

probability of emission in quasi equilibrium has changed to this expression where this was in

thermal equilibrium that is now multiplied by a term Efc-Efv/kT seeing this diagram that I have

drawn Efc-Efv is this gap it is much larger compare kT 0.025ev.

And therefore this exponent here is a very large number now this is very large no doubt but this

is  also  large  the  point  is  by  pushing  the  semi  conductor  into  quasi  equilibrium  you  have

additional multiplication factor which will  increase Fe of mu by orders of magnitude a semi

conductor in thermal equilibrium had Fe of mu approximately equal to E to the power –h mu/kT

which  means  the  probability  was  very  small  by  pushing  the  semi  conductor  into  quasi

equilibrium maybe by injection of carriers maybe by illumination different means.

You have an additional factor which is also a very large factor in other words you can change the

probability of emission by orders of magnitude we will see the this implication later that is how



in  an LED, LED before base there  is  nothing 0 output  you just  forward biasing light  starts

coming out what are you doing by forward biasing you are simply raising the probability of

emission alright we will discuss more about this a little later.
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So, let me continue with the thermal equilibrium case, so I erase this, so in thermal equilibrium

the rate of spontaneous emission is given by so we have the expression here Fe of mu is please

write you could write this again e to the power-h mu/kT, Fe of mu is replaced by e to the power –

h mu/kT. We want to simply this to a form if you multiply by this expression by e to the power

Eg/kT and e to the power –Eg/kT.

So, Rsp is equal to 1/tau r, 1/pie h cross square twice mr to the power 3/2, e to the power Eg/k

Tinto h mu-Eg to the power half I have simply multiplied by e to the power Eg/kT and e to the

power –Eg/kT e to the power h mu-Eg/kT, e to the power –Eg/kT is here and e to the Eg/kT is

here is just to write it in the form of h to the purpose. So, this therefore this constant here if we

call it as some constant D or D0 then this into h mu-Eg to the power half into E to the power h

mu oh this is minus, e to the power –h mu/kT.

In which case so minus, minus plus, so I should have – here please correct it, so e to the power –

h mu-Eg because h mu is greater than Eg therefore –h mu- so please correct this. So, this is of the

form some constant D0 into X to the power half into e to the power –ax where a is some constant



a or p let me write p because a we have used for lattice constant, so e to the power –px where is

equal to 1/kT is that okay.

This is off the form x to the power half that is x is h mu-Eg I am calling as x, h to the power half

into e to the power–px where p is 1/kT, so this is the rate of spontaneous emission. I want to see

what kind of variation I will get that is why I have written it that form.
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So, how does this vary we want to find out rate of spontaneous emission, so this is h mu photon

energy h mu and here I am plotting Rsp of mu, so where will it start h mu equal to Eg because all

density of states everything is valid for h mu greater than Eg, so this is Eg h mu equal to Eg is x

equal to 0, so from here as h mu increases this goes as h to the power half, so h to the power half

variation goes like this h to the power half variation.

E to the power –px variation is exponential drop okay, so e power –px let x equals to 0 it has the

value 1 at x equals to 0 and then it drops down rapidly, so it is an exponential drop depending on

the value of p is p is very large as you can see here it is a large quantity 1/kT, kT is 0.025 that

means 1/0.025 40, so p is about 40 it is dropping like this, so this is e power –px variation and

this is x power half variation and D0 is a constant.



So, D0 does not involve mu so it is a constant, so how would the net result look like so the net

result  would like  initially  this  function  is  very, so it  is  a  product  of  functions  product  of  2

functions so the product is 0 here but suddenly this is a large value, so the product jumps it goes

up to some maximum because later on exponential takes over please remember that x power half

ho I am sorry why did I write x power–half, x power half please correct this x power half.

(Refer Slide Time: 39:25)

X power half is a much slower variation exponential dependence is much faster so exponential

takes over and then the net drops down, so what I have plotted is rate of spontaneous emission as

a function of h mu which means it is maximum at some value here so Rsp max corresponds to

some value here, so this is Rsp max and it also has a certain line width line width in the sense

where Fwhm from here if you come down to half it is value approximately half it is value.

So, this is delta lamda, it is delta actually here in this case but you can find out what is the

corresponding of in this case it is delta h mu the full width at half maximum gives you the line

width of this source, full width at half maximum. How do we find out what is the maximum

where does the maximum occur we have an expression here for Rsp mu is equal to D0 with does

not have mu h mu-Eg here to the power half into this.

We want to find out the maxima how to find out the maxima, so how do we find the maximum

you differentiate this function with respect to h mu and find out where is the maxima.
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So, please do this as an exercise and see where do you get this maxima this maxima corresponds

to Eg+half kT please show this that the maxima appears at Eg+half do this as an exercise and

once you know that the maxima is at Eg+half kT simply substitute Eg+half kT here and you get

what is the maximum value Rsp of mu if you know that it occurs the maxima occurs at Eg+half

kT substitute this value for h mu.

So, Eg is goes away you are left with half kT to the power half and here again half kT so kT kT

cancelled see what you get. So, you know what is the maximum value here and we know every

parameter  in  this  for  a  given  material  we  know  radiative  recombination  lifetime,  constant,

constant, the reduced mass all parameters are known. So, I take given temperature you can you

know what is D0.

And therefore you can find out what is the maximum rate of spontaneous emission remember

that rate of spontaneous emission is number of emissions per unit time per unit volume if you

multiply this by the energy of the photon h mu it will give you power output from that material

power per unit volume.
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One other thing that note that the D0 alright let me write twice mr 1/pie h cross square what else

did  I  have 1/tau  r  the  D0 the  Do value of  D0 tells  you how far  it  goes  it  is  an amplitude

multiplying constant here, so whether if it this variation goes like this whether this variation does

like this is determined by D0 and what is determined by what determines D0, D0 is determined

by  temperature  all  are  constants  for  a  given  material,  so  2  things  1  is  tau  r  radiative

recombination time and here T.

So, larger if the temperature is larger than this exponential negative quantity becomes smaller

and therefore D0 will be higher. So, it is instructive to see that you put different temperatures for

example you put 250 k here, 300 k, 350 k you see that it changes. Similarly when you put T

different  values  the  peak  shift  because  this  is  Eg+half  kT  larger  kT  is  the  peak  shift,  so

deliberately I have shown the peak shifting like we see.

So, this peak shifting because, higher temperature will have larger spontaneous emission coming

out and also the peak shifted by a small value. So, this is this tells us the rate of spontaneous

emission from which we can calculate the spontaneously emitted power at nay frequency greater

than each. So, please do this as an exercise to find out the h mu corresponding to the peak value

and this one corresponding to the full width at half maximum.
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So, you can show that in terms of lamda, delta lamda I think is nearly equal to 1.45 into kT delta

lamda comes out to be I think it is 1.45 into kT multiplied by lamda p square. So, 2 exercises

please work this out delta lamda is equal to so delta lamda here refers to so let me just explain

this how you would go about it and then I will stop, so first for a given temperature find out this.

So, you know Eg+half kT substituting this value you know what is the maximum value Rsp

maximum, so this is max, so where Rsp becomes max half, so this is the value where this is Rsp

max by 2 there are 2 values of h mu and hence mu you will get 2 different values for which you

will have the value Rsp max by 2 at 2 different h mu value. So, correspondingly you will get 2

frequencies 1 here for mu 1 and 1 here mu 2 h mu 1 and h mu 2.

So, you know mu 1 and mu 2 if you know mu 1 and mu 2 you can find out what is lamda 1 and

lamda 2 simply see by mu 1 and see by mu 2 and therefore delta lamda is equal to lamda 2-lamda

1. Why we want in delta lamda is normally the light, the line width of the source is expressed in

terms of nano meters wavelength delta lamda. You may have heard or studied that an LED has a

line width delta lamda equal to 20 nano meters what I have plotted I have plotted intensity output

i lamda as a function of lamda.

Optical measurements are done at wavelength, so you change the wavelength and measure the

spectrum of the an LED output and you have intensity variation as a function of lamda the full



width at half maximum is delta lamda which is typically 20 to 30 nano meter for a light emitting

diode. If you measure the same thing for a laser diode normal laser diode this delta lamda will be

of the order of 2 to 3 nano meter for laser diodes for normal laser diodes fabricator laser diodes.

We will study about specialised laser diodes, special laser diodes which have extremely small

delta lamda single frequency laser diodes. So, that is why please calculate delta lamda in terms of

nano meters, lamda p here corresponds to the peak value, the peak wavelength here that is lamda

p alright.  So, I will stop here and in the next class we will discuss about rates of stimulated

emission and absorption and see the condition for gain under what condition we can have gain

from the semi conductor.

Spontaneous  emission  there  is  no  gain  but  you  have  an  emission  spectrum  but  stimulated

emission can lead to gain under certain circumstance certain conditions and we will see that

under what condition we will get gain.


