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Optical Joint Density of States, and Probabilities of Emission and Absorption
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So, today we will discuss the concept of optical drawing density of states, so before that we will

recall what we had studied in the last class that is we discussed about radiative and non-radiative

recombination,  radiative and non-radiative transitions  as a name indicates  radiative transition

involves  emission  or  absorption  of  a  photon,  and  non-radiative  transition  does  not  involve

emission or absorption of a photon.

It is quite clear when we look at this that an electron it sits in the conduction band if it is makes a

downward transition to the valance band, the difference in energy is given in the form of h mew,

so this is E2 this is E1, E1 is an energy level in the valance band and E2 is some energy level in

the conduction band. So, it involves emission of a photon or it could be incident photon leading

to a transition of electron from the valance band to the conduction band.

In the case of non-radiative transition the energy difference is given in the form of phonons. The

energy difference is this is usually the dominant forces in the case of indirect band gap semi



conductors. So, for example if I show an indirect band gap semi conductor like this whatever be

the  process  of  excitation  whether  it  is  optical  process  of  excitation  or  current  injection  it

essentially leads to injection of carriers in to this band which then come down by thermalisation

band accumulate at the bottom of the band.

Similarly here whatever hole generated wherever it is generated whether a hole is generated here

or here or here it will start moving to the top because the top of the band corresponds to low

energy for holes or electrons move down to lower levels and holes accumulate here. Now if an

electron wants to make recombination with hole then it has to make an oblique transition and as

we have seen by this is not permitted by the case selection rule.

Case selection rule requires that the transition need to be vertical that is delta k should be nearly

equal to 0 but this is not permissible by case selection rule. However as we have seen phonons

can have large momenta because the momenta is the momentum is given by h cross k which is

equal to h cross into 2 pie/lamda here, so this is lamda of phonon, lamda of phonons are of the

same order as that of electrons and therefore these this different in delta k.

So, please see this axis is k, so the difference delta k here is made up by phonons they are also

another class of transitions which are called phonon assisted radiation, phonon assisted radiative

transition. In this case an oblique transition can also lead to the emission of photon but it will be

assisted  by  a  phonon a  1  or  more  than  1  phonons,  this  is  called  phonon assisted  radiative

transition.

This  is  whereas  there is  no phonon pure photon transition,  radiative  transition  it  can be the

energy difference can be given out and momentum difference can be made out by number of

phonons participating and there is also possibility of 1 photon+phonon leading to this transition

which is called phonon assisted radiative transition. The energy difference is primarily made up

of photon but the momentum difference is  primarily  made up of phonons and that  is  called

phonon assisted radiative transition.



So, keeping this in mind let us discuss the topic of optical joint density of space, now what is the

need  for  defining  optical  joint  density  of  states  we have  see  in  density  of  states  we had a

reasonable detailed discussion on density of states tell us the number of states available per unit

volume and if you recall that our objective here is now to realise sources and detectors. So, we

are interested in emission and absorption means we want to see what is the number of transitions

or number of emissions.

(Refer Slide Time: 05:59)

Because  number  of  emissions  will  tell  us  number  of  photons  emitted  and therefore  we can

estimate what is the power that is emitted, so number of emissions per unit volume is given by

the number of density the density of states multiplied by the probability of occupation what is

this let me recall what we had seen the carrier density of electrons in the conduction band was

given by density of states row c of E into probability of a occupation.

You recall  this  n  of  E and n the  carrier  concentration  was equal  to  integrated  over  this,  so

integrated over this, this was total number of carrier or carrier concentration equal to n of E into

this, so n of E is equal to density of states multiplied by probability of occupation. Similarly P of

E, P was given by P of E dE which was equal to row v of E into 1-f of e the probably of

occupation of holes is 1-f of E dE.



If you keep this at the background then if I consider let us consider a radiation which is incident

of energy h mu and consider a level E1 here and a level E2, a level E2 in the conduction band for

a given photon of energy h mew or frequency mew if you fix E2, E1 is automatically fixed by

the  condition  that  h  mew equal  to  E2-E1.  An emission  or  absorption  involves  for  example

absorption, absorption involves an electron state in the E1 at E1 in the valance band.

And a valance state E2 in the conduction band, similarly if you are looking at emission then this

involves an electron sitting here at some other value let us say E2 dash and a vacant state at E1

dash this would lead to emission of a photon of energy h mew dash. So, emission and absorption

process simultaneously involves the a state in the valance band and a state in the conduction

band and therefore any process involves states in the valance band and states in the conduction

band.

Normally in this case we had density of states in the conduction band, density of states in the

valance band because hole concentration does not depend on this hole concentration depends on

the density of states in the valance band but in photon interactions you have 1 state here and 1

state here and therefore we define an optical joint density of states which simultaneously takes

care of the number of states for a given energy h mew please see.

If an incident energy h mew photon of energy h mew is incident, if you fix E2, E1 is fixed

because  the  difference  has  to  be  same  I  am  considering  only  allow  transition  I  am  not

considering oblique transitions we consider the allowed transitions are those transitions which

follow the case selection rule. So, when E2 is fixed E1 is also fixed and then it is possible that V

define a joint density of states.

Let me proceed with a derivation and then it will become clear to you that the joint density of

states does not depend on the actual value of E2 and E1 it always depends on E2-E1, so we will

just see the derivation and then it will become clear, so the named for defining an optical joint

density of states is because the transition involves states in the valance band and conduction band

and there can be several combinations of E2 and E1 which will be equal to h mew.
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We see this is E versus k, k is a vector depending on the direction of propagation of the electron

beam the EK diagram continuously changes if you are taking a direction 1,0,0 the EK diagram

will  be slightly different  if  you are following along 1,  1 direction then EK diagram will  be

slightly different which means for a given energy h mew there are several pairs of E2-E1 and

therefore there is a density of state that is number of states number of pairs of states available for

a photon of energy h mew to interact and this is given by the density of states.

We will see it will become more clear as we proceed for the so E2 is equal to Ec+h cross square

k square/ 2mc this is the parabolic approximation which is valid near the bottom of the band

parabolic approximation and E1 is equal to Ev-h cross square k square/2mv we already have this.

So, E2-E1 h mew is equal to E2-E1 is equal to Ec-Ev is Eg+h cross square k square/2 into

1/mc+1/mv, this is actually 1 over mr, mr is the reduced mass.

So, we can write h mew is equal to Eg+h cross square k square/2mr where mr is the reduced

mass 1/mc+1/mv equal to 1/mr. So, let me remove these and therefore from this expression we

have k square is equal to h mew- Eg.
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So, h mew-Eg into 2mr/h cross square twice mr/h cross square, so k square is equal to h mew-Eg

is this okay.

(Refer Slide Time: 14:03)

And if you substitute in the expression we had E2 is equal to Ec+h cross square k square/2 mc if

you substitute foe k square from here we have Ec E2-Ec+h cross square/2 mc maybe write it

fully 2mc into this one substitute here so for there is k square, k square is here, so I substitute

2mr/h cross square into h mu-Eg a substituted form.
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So, E2 is equal to Ec+mr/mc into h mew-Eg what do we see for every value of E2 there is a

value of mew, mew and E2 there is no E1 in this because E2, E1 automatically gets fixed once

you say h mew and therefore there is  a 1 to  1 correspondence  this  a  constant  these are  all

constant only E2 is any energy level here which means E2 is a variable and mew is a variable

and therefore there is a 1 to 1 correspondence between E2 and E1 exactly like this you can also

write the in terms of E1 and then you see that there is 1 to 1 correspondence between E1 and mu.

(Refer Slide Time: 16:00)

This  means  that  row  of  E2,  DE2  must  be  equal  to  row of  mew  d  row there  is  a  1  to  1

correspondence between mu and E2 therefore the number of states between E2 and E2+dE2 row

E2, dE2 is the number of states between E2 and dE2 this row is actually row c conduction band



density of states row c of E2 is dE2 is equal to row mew d mew what is row mew d mew is the

number of states for photons of energy between h mew and h mu+delta mew, h mu+d mew to

interact with row mud.

Mu is the number of states per unit volume number of states please include per unit volume

because you remember this was per unit volume per unit volume of the material per unit volume

number of states per unit volume evaluable for the photons to interact to interact means what to

emit or absorb. If photons are incident then if photons are incident with frequencies between mu

and mu+d mu.

Then the number of states evaluable for these photons to interact per unit volume is given by row

mew d mew. And this row mew d mew is related to row of E2 d E2 because of this one to one

relation. And therefore our interest is to get row mew why we are interested in row mew because

once you know the density of states evaluable for interaction means emission or absorption in

this case.

So, number of states evaluable for interaction multiplied by the probability of that interaction

probability of emission or probability of absorption will give you total number of emissions or

total number of absorptions per unit volume. So that is our interest to find out how many photons

are emitted per unit  volume of the material.  And then of course if  you multiply by the rate

constant it will give you rate of emission.

Finally we are interested in the rates of emission and absorption so, optical joint density of states

the advantage of this is it is simultaneously takes care of number of states in the valence band

and the conduction band. It does not know which is E1 and which is E2 it knows that if h mew is

this energy gap how many pairs are possible where are those pairs corresponding to which the

energy difference is so, how many states are available for a photon of energy h mew to interact

that is given by optical joined density of states.

It many books re-teaches the also write this is cv because row c is for the conduction band row v

is for the valence band. And this is cv or some books also write this as row op optical so, but we



can just drop that v I do not think we have any other where we have row mew and therefore I

would simply keep as row mew d mew, row mew d mew is the number of states for unit volume

for photons of energy between h mew and h mew mu+d mu to interact with alright.

(Refer Slide Time: 20:28)

And therefore so simplify this  therefore row of mew is equal  to row c of E2 multiplied  by

dE2/d2. We can simplify this for the row E2 we know the expression for row E2 that is equal to I

will write it here 1/2pie square into 2 mc/h cross square to the 3/2 recall the definition of a row c

of E2 into E-Ec E2-Ec to the power half this was the first term row c of E2 multiplied by dE2/d

mew what is dE2/dmu, dE2/dmu this is a constant, this is a constant.
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So, we simply have h into mr/mc, so multiplied by, so let me erase this into h into mr/x this

simplifies for the 1, 2 pie from this we can take with this and say h cross 2 pie from here I bring

here h/2 pie h cross 1 h cross this is h cross square to the 3/2 is h cross q and it cancels and so, I

am left with 1 divided by pie h cross square into 2 mc to the power 3/2 that is 1 mc here is that

something else that I have missed.

This is alright mc to the power 3/2 what I have missed dE2/d mew I should have a term mr/mc

here wait a minute a row of mew is equal to row E2 into d E2/dmu so dE2/ there was a was there

a power half here h mew-Eg did I miss something 1/pie s square that is correct mr, mc is here mr

what have I missed that is correct what I have written is correct there is nothing wrong okay it is

perfectly fine.
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I want to substitute for E2-Ec I just now erased that I am sorry, so E2-Ec E2 was equal to E2+Ec

and then +mr/mc so this is equal to mr/mc into h mew-Eg, E2-Ec, so E2-Ec to the power half

equal to this multiplied by the power half I am sorry and for this term here I want to substitute

this is that alright there is no confusion I suppose that for this also I wanted to substitute E2-Ec to

the power half is this.

So, I will let me write all of this 1/pie h cross square 2 mc to the power 3/2 here and into this h is

already taken, so mr/mc into all of this mr/mc to the power half into h mew-Eg to the power it is



simple algebra you can do yourself but I thought I will finish it. So, now you can see mc to the

power 3/2 cancels with mc to the power 3/2. But mr to the power 3/2 will remain so, the final

answer will be one over pie h cross square into twice mr to the power 3/2 into h mew –Eg to the

power half.

This is expression for row of mew so, let me erase all these unwanted things and directly write

the expression.

(Refer Slide Time: 26:00)

So, row of mew here is equal to one over pie h cross square 2 mr to the power 3/2 into h mu–Eg

to the power half is it okay. It is a simple algebra therefore, how does row mew vary.
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If I want to plot row of mew verses E so, row of mew verses E for normally we plot E here will

plot E there also. Please see this for h mew greater than Eg it up to Eg there is because this

expression all the expressions are valued for h mew greater than Eg any emission absorption

takes place.  We are looking at  inter  band transitions  there also intra  band processes we will

discuss a little later.

Now we are looking at inter band transitions which are possible for h mew greater than Eg

therefore from Eg starts as h mu–Eg to the power half variation of row mew. So, we have a

mathematical expression for row mew this is very important. Because next we will multiplied by

the probability of occupation probability of emission and probability of absorption and we will

get an expression for gain coefficient which will contain all these terms that is why we need this

derivation.

So, optical joined density of states tells us the number of states evaluable for photons to interact

with it is simultaneously takes care of states in the valence band and the conduction band. So, in

all optical processes it is the joined density of states which are important. In electronic processes

we  always  deal  conduction  band  and  valence  band  separately  but  photon  emission  and

absorption involves a state in the valence band and state in the conduction band. Simultaneously

and therefore we need to take optical joined density of states alright.
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So, let us go to probability of because if we multiply this by the probability of emission will get

number of emissions. If we multiply by probability of absorption will get number of absorption.

So, probability of probabilities of emission and absorption. So, all the while you see that we are

discussing with EK diagram one of the early classes I would said everything can be seen from

the EK diagram.

The normal band and energy band diagram does not tell  you anything and I am considering

direct  band  gap  semiconductors.  And  we  are  looking  at  vertical  transitions  that  is  allow

transitions other effects we are not taking at the moment. We will see that we will have to take

those  into  a  account  to  explain  actually  practically  absorbed  spectrum.  So,  probability  of

emission let us for emission.

You need an electron sitting in state E2 which makes a downward transition and therefore you

need a hole or a vacant state at E1. So, this is emission what is the probability of emission,

probability of emission therefore requires probability of emission of a photon of a energy, h mew

equal to E2-E1 requires that the state E2 is occupied by an electron and the state E1 is a vacant

state in the valance band which is a hole which means this is probability of occupation of hole.



The probability of emission therefore probability of emission f of e is product of the probability

of occupation of electron here and probability of occupation of hole. So, that is equal to f of E2

this f e is the Fermi function you can write this as P you wish we can write this as P probability.

(Refer Slide Time: 31:09)

Because  f  we may so P of  e  this  is  Fermi  function  f  of  E2 into  1-f  of  E exactly  like  that

probability of emission will be given by for probability absorption is given by if you have a state

here an electron is sitting at energy E1 dash. And if you have a vacant state here at E2 dash then

a photon can get absorbed so, the probability of occurrence of this processes or probability of

absorption is probability of occupation f of E1 dash.

And here 1-f of E2 dash as shown two different energy levels otherwise it is f of E1 into this. Let

us see graphically because therefore the net probability of net emission will depend on which is

greater a probability of emission is greater than probability of absorption than you will have net

emission and vice versa. And therefore which one is greater of the two or which one can be

greater of the two and how can you make one greater than the other.

If I want to realise the source then I need probability of emission greater than probability of

absorption. How to make the probability of emission greater than probability of absorption let us

see this. But first there are two cases here case1 thermal equilibrium and case2 will be quasi



equilibrium. So, thermal equilibrium means the probability of occupation in the valence band

and in the conduction band is simultaneously described by one single Fermi function.

A thermal equilibrium one Fermi function describes the probability of occupation of electrons in

the valence band as well as in the conduction band. In quasi equilibrium you will required two

different Fermi functions one for the valence band and one for the conduction band. So, let us see

first case1 thermal equilibrium probability f of E2 PE is equal to f of E2 into 1-f of E1. Let us see

graphically what is this so, we have this is Ev is we do not of Ec I am sorry Ec.

And this Ev and if I want to plot a typical Fermi function we have plotted this earlier also. So,

this  is  f  of  E this  function  is  a  f  of  E it  is  0  at  this  end 0 and 1 here  1.  And 0.5 is  here

approximately so, I go here and in this semiconductor Ef remains here it need not the intrinsic or

anything. I would just taken from semiconductor, and this is the valence band and this is the

conduction band and the upper one is the conduction band.

E2 is some value here so, E2 is here and E1 is some value here in the valence band. It could be

close to the h so it is some value there and some value. What is f of E2 f of E2 is this at E2 the

value of the function here. So, it is this value here which means it is simply this width this width

here this magnitude may be 0.1 or 0.2 whatever in my graph actually as you know the numbers

are extremely small.

But  in  my  graph  it  looks  like  say  point  because  this  is  0.5  and  therefore  this  as  if  0.1

approximately. This is f of E2 probability of emission is f of E2 into 1-f of E1 what is f of E1 E1

is here so, this value here up to this. This value approximately 0.9 is f of E1 1-f of E1 is this

difference here is this clear maybe I should have drawn a little big bigger figure. But I hope you

can find out this is 1-f of E1 this is f of E2.

So, f of E2 into f of E1 is this, this product this number whatever it is multiplied by this. So, that

is probability of emission so, we have this into this and probability of absorption. Suppose I take

E1 and E2 I could have taken let we draw another graph it would be better rather than making



complications there. So, this is Ec this is Ed here is the probability f of E and I draw a fresh

probability function Fermi function here.

And this is 1 this is 0 0.5 I gave you a question in the minor to graph because I am drawing in

front of you regularly. If you should also make practice to draw so, this is approximately 0.5 so,

Ef easier for me energies here. So, we now have some value E2 dash here E2 dash and some

value E1 dash. I could have please remember I could have taken the same value E2 and E1. Now

you see probability f of absorption f of is a product of f of E1 which is this.

This is f of E1 okay because this function is a f of E probability Fermi function therefore at E1

the value of the function is f of E1. So, this is f of E1 this value which is here is f of E1 and 1- f

of E2 what is f of E2, E2 is here so, E2 is this that is this value 1 this is 1. Therefore this

difference is 1-f of E2 this one is 1-f of E2 dash. So, what do you see do you need to do any

mathematics here no need of any mathematics probability of emission is f of E2.

A small quantity multiplied by a small quantity and Pa probability of absorption is f of E1 a big

quantity multiplied by 1-f of E2 dash another big quantity. So, it is obvious that Pa is greater than

Pe or Pa is in general much greater than Pe. Because the numbers involved here or 0.001 and this

will be 0.999 so the product here Pa is much greater than P. In fact in thermal equilibrium it is

impossible to have Pa Pe greater than Pa that means probability of emission is always less than

probability of absorption.

That  means  no  semiconductor  will  emit  on  its  own at  thermal  equilibrium you  have  to  do

something. So, that it can which means we have to move over to quasi equilibrium we know how

to get quasi equilibrium there are different ways of pumping the semiconductor and the most

convenient is using a pn junction. So, let us just see this is quasi equilibrium what happens you

can see that also graphically but mathematically also you can.
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So, in quasi equilibrium let me draw the graphs Pe probability of emission is equal to f of E2 into

1-f of E1. And Pa so, case2 now I am discussing case2.
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So, case2 quasi equilibrium Pa is equal to probability of absorption is equal to f of E1 into 1- f of

E2 one single function for thermal equilibrium. But for quasi equilibrium this is fc of E2 a Fermi

function for the conduction band. And fv of E1 this is fv of E1 and this is fc of E2 recall the

graphical picture that we had one Fermi function like this. And a second Fermi function like this

so, there were two Fermi functions this is fc of E for the conduction band.



And this is fv of E where is the Fermi energy this is 0 and this is 1 then 0.5 is a so, 0.5 draw a

vertical line. So, this intersect here so, we have Efv the Fermi energy of Efv for the valence band

sitting  here  Efv  here  and  Efc  is  sitting  here  Efc  is  the  Fermi  energy  corresponding  to  the

conduction band function. This function and Efv is the there are two Fermi functions now you

can immediately see that there is a possibility.

If we push this sufficiently  high or if you push this sufficiently  low there is a possibility  of

having. So, fc of E2 into this so, let us substitute mathematically and see what do we get this

therefore Pe equal to fc of E2 there is 1/E to the power E2-Efc/kt+1 first term multiplied by 1-f

of E1. So, 1-f of E1 I can take a common denominator so, I get E to the power E-Efv/kt/1+E to

the power E-Efv/kt.

This is 1-f of E this is f of E2 and this is f of E1 1- f of E1 okay 1-this so, then I multiplied by

this 1 1 cancelled. So, I am left with only this term in the numerator okay. So, this is Pe of E

write for Pa of E so, P of e is fv of E1 so, instead of this you will get so, we have Pa of E.
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Pa is equal to probability of absorption all of this is for mew Pe of mew and pe of mew. Because

E2-E1 in this expression is fixed h mew so, Pa of mew is equal to fv. So, 1/1+e to the power E1-

Efv only thing is we need to add an suffix c or v. Otherwise it is the same Fermi function so,



because we have two Fermi functions we have to add this into 1-fc of E2. So, in the numerator I

will get e-e to the power E2-efc/kt/1+e to the power E2-Efc.

I  just  jumped  one  step  that  is  all  what  do  you  see  the  denominator  is  common  see  the

denominator  is  common  1+this  1+here.  And  this  is  here  1+E2-Efc  is  here  denominator  is

common.
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So, Pe of mew and Pa of mew for Pe of mew we want Pe of mew to be greater than Pa of when

can this  happen.  In  thermal  equilibrium it  is  not  possible,  when can  this  happen when this

numerator term is greater than this numerator term denominator is the same. This numerator is

greater than this numerator which it means it is e to the power therefore this power is greater than

this power kt is also common that means E1-Efv is greater than E2-Efc.

So, in twice E1-Efv is greater than E2-Efc a very, very important condition which is now coming

so, I can take E1 there I can take Efc here this implies Efc-Efv is greater than E2-E1. And h mew

is  always  greater  than  Eg  this  is  the  condition  for  emission  to  be  greater  than  absorption

probability of emission to be greater than probability of absorption that is the difference in the

quasi Fermi levels must be greater than the band.



The difference in the quasi Fermi levels must be greater than the band gap energy Eg. This is a

very important condition this is equivalent condition to the condition of population inversion. In

atomic systems you know when for amplification to take place N2-N1 should be positive or N2

should be greater than N1 or N2-N1 should be greater there 0. If you have two atomic energy

levels and N2 is the number of atoms in the upper level.

And N1 then if N2-N1 is greater than 0 then you can have amplification for net amplification this

we call  population inversion in laser physics. This is an equivalent condition as we will  see

further  for  semiconductor  lasers.  In  semiconductor  lasers  this  is  not  the  condition  in

semiconductor lasers this is the condition that the difference between the quasi Fermi levels must

be greater than Eg will stop here for today.


