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Lecture - 7 

Occupation Probability and Carrier Concentration 

 

Continuing with the course, today we will discuss occupational probability and carrier 

concentration.  
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In the last class we have discussed about the density of states rho of e it was given by an 

expression 1 over 2 pi square into 2 m c by h cross square for valence band of for the 

conduction band to the power 3 by 2 into E minus E c to the power half for E greater 

then E c. This was the density of states and as I mentioned the importance of density of 

states is to determine the carrier concentration and we need to determine the carrier 

concentration to know the current. And carrier concentration is given by n of E d E and 

where, n of E is the density of carriers and this is equal to density of carriers is equal to 

available density of states available density of states multiplied by the probability of 

occupation the probability of occupation. So, f of E here is the probability of occupation. 

We will discuss this probability of occupation in this class and determine the carrier 

concentration.  
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The probability of occupation for electrons is given by statistical mechanics is given by 

the fermi function: f of E is equal to 1 divided by E to the power E minus E f by k t plus 

1. The probability of occupation of electrons in an energy level E. So, electrons in the 

energy band this is E always the vertical axis is energy, this is E c, this is E v. Anywhere 

if you take an energy level in the valence band let us say E equal to E 1 or if you take in 

energy level in the conduction band let us say E is equal to E 2. Then, if you want to find 

out the probability of occupation both these bands have number of states, large number 

of states. What is the probability of occupation of these allowed states? 

The probability of occupation for valence band as well as for the conduction band, 

probability of occupation by electrons is given by the fermi function. So, if you 

substitute if you want to find out the probability of occupation here E 1 then, you 

substitute E 1 here. If you want to find out the probability of occupation E 2 at the level 

E 2 then, you substitute E 2 in this expression where, E f is a constant for the fermi 

energy. 

So, fermi function or it is also called fermi dirac distribution because it tells us it 

indicates the distribution of electrons in the energy bands. So, if you want to plot this f of 

E. As you know in the valence band the probability of occupation is very high, valence 

band is completely full at 0 k. At 0k if so, this is E v and this is E c and here is E. So, this 

is the conduction band and this is the valence band. If you consider at 0 k, I want to plot 



the probability here on this axis f of E in any time solid state physic f of E is plotted here 

and energy in this axis but, here for uniformity will always keep vertical axis E. So, if 

you plot f of E here at 0 k, how it be? That the valance band is completely full which 

gives the probability of occupation of every state is 1 and the probability of occupation 

here is 0 and as you know that if E f remains somewhere here, it can be anywhere but, if 

E f is here then, the probability of occupation is 0 up to E f. And for E greater the E f, the 

probability of occupation is 1. So, in this axis this is 0 f of E is equal to 1. 

So, what I have plotted is the f of E as a function of f of E as a function of E. For E 

greater than f probability is 0 and E less than. There may not be a level if there were the 

level at f or anywhere here for example, probability equal to 1 here what does it mean? 

There is no level, there is no state permit. If there were to be a state then, the probability 

would have been 1. But, all the level here are completely full, completely occupation of, 

probability of all. If you take a finite temperature, this is what you already know. If you 

take for any temperature at E equal to f that is said this level, E is equal to this level for 

any temperature that 0 and therefore, it is upon 0 is 1, 1plus 1 or the probability is half. 

So, f of E equal to half for all temperature f of E equal to half.  

So, if I indicate the half here so, this is 0.15. See this I am plotting the probability of f of 

E if this is half. Then, if you take any finite temperature we know that the electrons form 

the valence band it can upward transition in finite probability of finding electron in 

conduction band and the probability function is still described by the probability 

distribution is still described by fermi function and the fermi function gets smeared, this 

step function gets near but, passes through the same point, this is f of E. We can actually 

plot this numerically you can plot this numerically calculate and plot this for any 

temperature.  

So, this is for a finite temperature T, T greater than 0. What this indicates is this the finite 

probability of occupation of these states in the conduction band. This function is f of E. 

What is 1 minus f of E? If f of E is the probability that a state is occupied then 1 minus f 

of E is the probability that the state is vacant unoccupied, the state is vacant. In the 

valance band if 1 minus f of E please see, it is f of E is going like this. Therefore, if I take 

an energy value E 1 here, let me draw a fresh. f of E is the probability of occupation 

therefore, 1 minus f of E is the probability that the state is vacant. 
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So, if I plot again the same graph but, I am plotting again. This is E v and this is E c. The 

fermi function is at a finite temperature is varying like this. So, this is the line f of E this 

is f of E, on the x axis I have f of E, vertical axis is E energy and 0.5 is somewhere here 

therefore, E f is somewhere here E f.  

At any given energy value E 1, I find out what is f of E? This is the value f of E here. 

Same for example, 0.9 say f of E is 0.9 this means the energy the occupation probability 

of the energy level given is 0.9 which means the probability that the states at E 1 is 

vacant is 0.1, 1 minus 0.9 is 0.1. Is this 1, see this magnitude here if these magnitude of 

these length is 0.9 then, this is 0.1. This is the probability that the state is vacant. A 

vacant state in the valance band represent what it is the hole. Therefore, 1 minus f of E 

represents the probability of occupation of a hole, 1 minus f of E is the probability that 

the state is vacant which means as far as valance band, we do not have the hole in the 

conduction band.  

For example, let me take here at some value E 2, E 2 is a value in the conduction band 

energy value in the conduction band some value E 2. This may be some number let us 

say 0.05 for example. So, probability of occupation here is 0.05. What is the probability 

that there is no occupation? The probability that there is no occupation that is this one 1 

minus f of E is 0.95 because this is 0.05 therefore, this is 0.95. That is not the probability 

of occupation of the hole but, that is the probability that the state is vacant. So, please 



remember f of E is the probability of elect occupation of electron whether in the 

conduction band or the valance band. But, 1 minus f of E is the probability of occupation 

of the hole if you are talking of valance band. Otherwise, the probability of state is 

unoccupied. So, 1 minus f of E is the probability of occupation of a hole in the valance 

band obviously. At a finite temperature there is always a probability that there are some 

electrons in the conduction band and there are some holes in the valance band. Of course, 

depends on the band gap E g. 
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If E g is very large that is a 5 electron holes then, the probability of finding the electron 

may be 10 to the power of 20 which means literally null. But, for normal semi conductor 

E g is the order of 1 electron volt which means a probability of finding the electron here. 

So, the second thing that you have to see is this is E f then the curve looks something like 

these, this let me indicate first graphically because graphically becomes very clear. This 

axis is f of E and this is 1 probability and this is 0 and E is equal to E f this is 0.5. If E f is 

towards E c, this is E v. If E is shift over E c that means the probability function because 

this point at E is equal to E f. Let me draw a second value of E f this is E f 0 let me call 

this as E f 1. For another material if fermi function is E f 1 it means this point of 

probability of half should come here that means this should shift for half. 

 So, I will have the curve will remain parallel please see that the cure will remain parallel 

this one but, it is shifted up. What is that mean? And clearly that curve shows that now 



the probability of occupation of electrons in the conduction band is more and probability 

here has become very small, 1 minus f of E, number of holes here will be very small, 

probability of occupation. On the other hand if the fermi fun were to be here let says E is 

equal to E f 2 that means, this curve would shift down because there is nothing else in the 

fermi function other than E f that is simply E to the point E minus E f by k t plus 1, 1 

divided by. So, that is means that the curve is now shifted downwards. 

So, you have the 0.5 coming here and you see now the area under here is quite large. It 

means the larger number of holes in the valance band. So, graphically it is very clear of 

course, in mathematic it will show you the numbers. One thing which I would like you to 

do is, if you shift E f here I have shown it like this is appears as the probability is very 

high because please see this is 1 because it is 0 to 1 here 1. This appears as see this is 0.2 

or may be this is 0.4. But, just put numbers in this fermi function for practical p type 

material, practical n material and you see what is the kind of number said you get. E 

minus E f by k t plus 1. Choose some suitable temperature say 3 and k and put number 

and try to plot this. You will be surprise that here I shown it is a 6.4 this will be very very 

small number. The probability here is extremely small result among 10 to the power of 

minus 4, minus 6 that kind of number literally you cannot see any think like this, it will 

be actually in next graph it will be literally here almost 0 it will be almost 0 and then it 

goes like this and almost 0 everywhere because the probability of occurrence here is 

extremely small at normal temperature. But, we have larger number of electron. How is 

it possible? At room temperature if you take silicon then, the number of electron the 

carrier concentration there is of the order of for the silicon. 



(Refer Slide Time: 17:58) 

 

It is of that graph 10 to the power of 10 per cc concentration n i intrinsic carrier 

concentration at room temperature is this. But, I am saying the probability is very very 

small how is it possible because n is equal to rho of E into f of E. The density of states is 

very large. In the last class I had calculated and the total numb of states from E c to E c 

plus 0.1 E v. Has anybody try to complete that integral? So, E c to E c plus 0.1 E v. This 

I called as n and ask you to calculate what is the number of states? Number of states was 

of the order of 10 to the power of 18, I think 2.5 10 to the power of 18 is the number. 

Please do numerical, it is very important because there will be numerical in the exam and 

more importantly you are handling 10 to the power of minus 34, 10 to the power of 

minus 19, 10 to the power of minus 23. So, unless you parties you will not be able to do 

the numerical calculation. Every one of you will get a different answer. So, please 

practices numerical because there are huge problem you have to handle. So, the number 

of states it is all fussed very large and therefore, even though the probability here is very 

small, probability actually number is very small, multiplied by the number of states, it is 

significant, it is still of the order of 10 to the power of 10. So, this is the distribution of 

occupation probability of course, we had aware of this I am just recalling all the concept 

that is essential.  
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Therefore, the carrier concentration the carrier concentration is equal to rho of E into f of 

E d E. Let me consider n is a carrier concentration in the conduction band. So, this is E c 

to infinity I am writing E c to infinity actually, E c to certain values some values of band 

but, I am writing it up to infinity because as I mention to you the numbers here are 

extremely small. Larger the difference E c minus E here, smaller will be the probability 

that is, this term goes to 0 it does not matter you write E c this may be up to E c plus 2 E 

v or 1 E v but, f of E already goes to 0.  

Therefore, it does not matter whether you integrate from E c to E c plus 1 E v or E c to 

infinity it is 1 and the same. That is why I am writing the total number of carriers in the 

conduction band as n is equal to E c to infinity. So, substitute here rho of E integral one 

among 2 pi square 2 m c by h cross square to the power 3 by 2 into E minus E c to the 

power of half into f of E. So, 1 divided by E to the power E minus E f by E t plus 1 d E, 

E c to infinity. This gives as the carrier concentration. Before I carry out the actual 

integration here this is actually not possible to integral analytical, all right. Let me 

continue with this. 
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So let me take out 1 over 2 pi square into 2 m c by h cross square to the power v by 2. 

Constants I have taken out into integral E c to infinity E minus E c to the power of half 1 

divided by plus 1. This can be integral only numerically or we can make some 

simplification. You add and subtract E c here in the denominator and this multiply 

divided by k t. So, this is equal to 1 over 2 pi square twice m c by h cross square to the 

power 3 by 2. So, I add and subtract E c and then, we put E minus E c E minus E c by k t 

equal to eta and E c minus E f by k t equal to eta f in the lower. So, this is d E, d E is 

equal to d eta into k t and substitute in the expression.  

Further, when E is equal to E c this is 0 E c, E is equal to E c then the lower limit is 0 and 

when E is equal to infinity it is still remains infinity. So, I have 0 to infinity eta to the 

power of half into d eta divided by E to the power eta minus eta of by k t eta minus eta f 

plus 1. So, eta is already dimension less. These are the substitution it make this 

substitution and you see that you get this expression. And outside you will have 1 k t 

coming from here and 1 root k t coming from this so, you will have k t to the power 3 by 

2. Please do this substitution and see. So, you will have this equal to 1 over 2 pi square 

into twice m c by h cross square into k t to the power 3 by 2 into this integral here is 

called the fermi half integral, f half of eta. f half of eta this is called this last step is called 

the fermi half integral.  



I will come to the simpler Boltzmann approximation but, because I had written the 

complete expression I thought I will give you the vigorously the correct solution. So, this 

is n. There is no approximation in this so fermi half integral. This has to be evaluated 

numerically you cannot there is no analytical solution this has to be evaluated 

numerically. So, we have 1 over 2 pi square to m c by h cross to the power 3 by 2, k t to 

the power 3 by 2, we see 1 k t coming for here, square root of k t and 1 k t coming from 

here. So, that is why k t to the power 3 by 2. Eta and eta are dimensionless that is why it 

is E to the power eta minus eta f. This energy dimension energy dimension so eta is 

dimension. So, this is called the fermi half integral. So, if you have to actually calculate 

the carrier concentration for any value of E f whether it is highly or doped or low dope 

does not matter this is the rigorously correct solution fermi half integral. There are the 

approximation which are available. The fermi half integral varies. I will just show you 

what kind of value we talk of for the fermi half integral. Just to get an idea whether we 

are talking of 100s or 1000s million, what kind of number is this? 
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So, this fermi half integral varies approximately just showing you approximately. So, this 

is fermi half integral half eta f versus eta f. Because it is already integrating over energy 

therefore, it simply depends on position of eta f where is eta and eta if is E c E c minus E 

f by k t which means it simply depends on the position E f. So, at eta f is equal to 0 so, 

this is eta f is equal to 0 this are approximate number just to get you are idea so this is 

approximately 0.1 which gives you some idea that what kind of number we are talking 



of. So, this is 0, this is 10. So, 0.1 10 power minus 1, 10 power minus 2, 10 power minus 

3, the numbers are 0 here, this is 0 around eta f equal to 0 2 4, this is minus 2 minus 4 

and so on. Typical numbers for the Fermi. Eta f is equal to 0, means what? E f is at E c, 

the fermi level entered the conduction band. At E f equal to E c eta f is 0. The fermi 

integral is approximation point approximation numbers please, it just get you get me an 

idea what kind of numbers are here. So, let us say the fermi function just entered the 

conduction band. So, this is your E c and E v in a highly doped in a doped 

semiconductor. So, E f has also come here then eta f is equal to 0 and this is approximate 

0.1. So, you substitute 0.1 and put all that numbers here and you get the carried 

concentration. So, this is the exact way of calculating. But, we are also familiar with the 

boltzman approximation it is by simpler I come to the boltzman approximate. So, what is 

the boltzman approximation? Boltzmann’s approximation. Any doubts? Which one? 

This one. Yes. So, let me write in terms of 10s 10 power 0, 10 power 1. Yes, that is right. 

Yes right because E will become 0 then, carrier concentration will become 0 if it is 10 

power 0. So, please make a correction there if fermi integral is 0 then, a carrier 

concentration is 0 and this value at this such a high value of intent that becomes 0 than, 

yes. So, the boltzman approximation is correct that normal doped semiconductor, if you 

take an n type doped semiconductor then, E f may be somewhere here. You take gallium 

arsenide or silicon. So, this is E g is approximately at the order of 1.42 for gallium 

arsenide and it as already more toward the conduction band. 

Let us see this difference here is about 0.2, 0.2 E v. I put some numbers because numbers 

make it clearer that is wise use numbers. So, 0.2 E v. Let us say the different here is it is 

always the move toward the conduction band because it is a n type material. So, n 

gallium arsenide. The probability of occupation f of E is given by 1 divided by e, E 

minus f by k t plus 1 in the conduction band.  

So, in the conduction band E is greater than E c, E is greater than E c for conduction 

band. This is forward of both conduction band and valance band but, for conduction 

band E is greater than E c. So, if you substitute E here then, E minus E f is always greater 

than for this particular example that I have taken, E minus E f is greater than point 2 E v. 

At room temperature so, E minus E f is greater than point 2 E v. I am writing this for this 

particular example that I have taken E minus E f is greater than 0.2 E v. And k t, at room 

temperature is nearly equal to 0.026 electron volts 0.26 electron volts. 



Which means this exponent here is 0.2 divided by 0.026 which is approximately 8 is the 

exponent. So, you have E to the power 8 plus 1, E to the power 8 is a very very large 

number compared to 1. E to the power 8 is much larger then compare to 1 and you can 

neglect this 1 compared to E power 8. And therefore, this I can write approximately 

equal to for E minus E f much greater than E t, I can neglect to 1 in comparison with this 

and I can write this is equal to E minus E f by k t. This is the boltzman approximation.  

In Boltzman approximation, the Boltzmann’s approximation is valid when E minus E f is 

much E f is much greater than k t. When E minus f is much greater than k t then 1 is 

neglected in comparison to this number and therefore, we write this as approximately 

equal to E minus E f by k t. If you substitute this, then that integral is easily integrated. 

This is true for both conduction band and valance band. The only requirement is E minus 

f should be much greater or E f minus E for the valance band E f minus E should be 

much greater then k t. 
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Then, n is equal to all those constant 1 over 2 pi square 2 m c by h cross square to the 

power 3 by 2 into integral E c to infinity, we had rho of E which is E minus E c to the 

power half into e to the power E minus E f, minus E minus E f, here by E t. Let me erase 

this let me rub this off. This is now integrable, this is easily integrable. So, E minus E f 

by k t. So, how do we integrate this? Follow the same procedure add and subtract the E c, 

some of you would have done already so please. So, E minus this will become E minus 



minus E minus E c by k t into E minus E f minus E c by E t. Added and subtracted for 

this term. And then, we can put this put this as x there I will have this equal to 1 over 2 pi 

square 2 m c by h cross square. Let me complete the algebra here and integral 0 to 

infinity as before I am putting this equal to x. Therefore, at E is equal to E c lower limit it 

is 0 so, 0 to infinity this will be x to the power half and E to the power minus x d x into 

this term outside.  

Let me keep it here, E to the power E f minus E c by k t, any other term? Any other 

term? k t to the power so, d E will contain 1 k t, 1 k t to the power half. So, k t to the 

power half k t to the power half. So, simplify this, you should be getting an expression 

like this m c k t by to 2 pi h cross square to the power 3 by 2 into e to the power E f 

minus E c by k t k. Please, simplify this and check the n is equal to 2 into m c k t by 2 pi 

h cross square to the power 3 by 2 into e to the power f by k t. So, this is under the 

boltzman approximation.  
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 Exactly like this if you follow for the valance band you get expression for p is equal to 2 

into m v k t by 2 pi h cross square to the power 3 by 2 into e to the power E f, e to the 

power E v minus E f by k t. This is sometimes denoted as n c for the conduction band 

and this is denoted as n v. You see that it contains every think is concept except the 

effective mass, effect mass m c in mass m c and effect mass n v in the case of m v in the 

case of n v. If m c equals to m v both constant have the same. This is a very large 



number, if you put numbers you will see that this will be 10 to the power of 18, 10 to the 

power of 19 or very large number this part. Sometimes you are getting doubt whether it 

is f minus, may be you had made mistake E f minus E f or E c minus E f. How do you 

verify? E f minus E c so, this is for the conduction band under boltzman approximation 

which means my E f is somewhere here, this is E c, this is E f under boltzman 

approximation. So, E f minus E f is negative f is smaller E c is larger. So, this is negative 

therefore, this qualities will be e to the power negative which means factor less than 1. 

And the factor has to be the less than 1 because the carrier concentrations I am talking 

about order of 10 to the power of 10, 10 to the power of 12 and if this number is very 

larger 10 to the power 19 naturally, this number should be smaller much smaller than 1 

and therefore, it is correct this correct E f minus E c. A cross check, a quick cross check, 

sometimes were by using a negative sign or something you would have plot as E c minus 

E f. If this becomes E c minus E f this the positive number much greater then k t so, this 

will also give e to the power of 8, e to the power of 10 which is a very larger number. 

This is correct, all right. I will stop here because we have to take a quiz today, a very 

simple quiz. 
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So, please take a sheet. This is a very simple one. And please write your name first 

before you forget. Define rho of k, the density of states and ‘b’ what is the unit of rho of 

k? Define prescribedly rho of k. In the last week I think we would have defined atleast 



10 times. So, I am sure you will be there with you. Those who finished you just give it to 

me and you can leave. 

 

 


