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So, good morning and we start with lecture 2, energy bands in solids; as I mentioned our 

objective will be to review the essential semiconductor physics.  
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In the last class, we discussed about the subject matter, the subject matter of 

semiconductor optoelectronics comprises of, it deals with devices and phenomena, 

devices and phenomena and phenomena which involve interaction of optical processes 

with electronic processes. 

Therefore, this will intern involve study of study of optical and electrical properties 

optical and electrical properties properties of semiconductor optoelectronic materials, 

optical and electrical properties. It will involve interaction of a study of interaction of 

photons, photons with electrons and holes in a semiconductor, electrons and holes in a 

semiconductor. The technology will further involve design, design and structure and 

structure design and structure of devices, design and structure of devices. And of course, 

fabrication technologies; that is device fabrication technology device fabrication 



technology device fabrication technology. In this course, we will consider these three 

aspects including design and structure of the devices, their performance, characteristics 

of the devices, but not the device fabrication technology; because there are other courses 

which cover device fabrication technology. So, these are the three aspects which we will 

cover in this course. 

So, we start with the first one; that is to study optical and electrical properties of 

semiconductors, optical and electrical properties. So, we start with the formation of 

energy bands all of you would have studied about this. So, I am just recalling formation 

of energy bands in a semiconductor. So, most of the semiconductors of practical 

importance are crystalline in nature; crystalline (( )), most of them gallium (( )) all the 

binary semiconductors that I have written silicon, germanium all are crystalline. 
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And most of them are also are characterized by a cubic lattice. They may have different 

structures like diamond structures, zinc blend structure, but most of them are 

characterized by a cubic lattice. In cubic lattice, as you are aware that there are simple 

cubic, body centered cubic BCC and FCC face centered cubic. So, simple cubic, if you 

draw a cube the atoms are located at the corners of this cube. So, naturally there are 8 

atoms, 8 corners; the simple cubic. But as you know in the entire crystal structure, each 

cubic cell here is shared for example; there are further cubes on this side, further cubes 

on this side. So, every atom here is shared by with eight other cells. And therefore, the 



contribution of this atom per cell is one-eighth and there are 8 atoms forming one cubic 

cell here and therefore, number of atoms per number of atoms per unit cell per unit cell is 

equal to 1. 

If you take a body centered cubic, then there is one more atom at the center here one 

more atom at the center and therefore, number of atoms for BCC, number of atoms per 

unit cell is 2. If you take face centered cubic; that means, as you can see it comprises of 6 

faces. 2 up and down, 2 on these sides and 2 on the other sides; so there are 6 faces. At 

the center of each face, if you wish you can draw another one, another diagram. So, these 

8 atoms are in at the 8 corners plus on this face if I consider this face one in the middle of 

this face, so first face here, second one here; each face there is 1 atom here and so on. So, 

we have 6 atoms sitting on 6 faces, in addition to the 8 atoms at the corners. But each 

face is shared by 2 cells on one on this side and one on this side; which means every cell, 

the atom contribution per cell is half per face. 

So, half into 6 faces; so we have 3 additional atoms which means for FCC we have 1 that 

is 1 by 8 into 8 plus 1 by 2 into 6 which is equal to 4. Number of atoms per cell is 4, 3 

coming from the 6 faces and 1 coming from the corners; so number of atoms per unit cell 

is 6, is 4. Now, why do I need this numbers we will come to know in a minute. My 

objective is to have an estimate of number of valence electrons. So, to know the number 

of valence electrons I must know the number of atoms per unit cell and number of 

electrons per unit cell. So, I want to calculate how many number of atoms are present per 

unit volume of the material. 
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So, simple engineering estimates; so you take the cubic cube again. So, one atom; if I 

take simple cubic S C, simple cubic, then one atom per cell. I want to finally calculate 

the number of electrons or density of electrons which means number of electrons per unit 

volume, number of valence electrons per unit volume because we would require the 

carrier concentration to determine the electrical properties. And therefore, I am starting 

with fundamentals. 

In a semiconductor, typically the inter atomic spacings that is inter atomic spacing a is 

anywhere in the range 3 to 7 angstroms, 3 to 7 angstroms is the inter atomic spacing; this 

one or this one approximately of that atom. If you take gallium arsenide for example, it is 

about 5.65 angstroms; so 3 to 7 angstrom. So, if I want to estimate what is the volume 

occupied by one unit cell volume occupied by 1 unit cell, let me take this as 5 angstroms; 

some intermediate value just can estimate 5 angstrom which means what is the volume 

of this? The volume is 5 into 5 angstrom. So, volume of unit cell which is equal to 125 

angstrom cube. So, that is equal to one angstrom is 10 to the power of minus 10 meters 

or 10 to the power of minus 8 centimeters. So, this is 125 into 10 to the power of minus 

24 CC or centimeter cube is the volume; volume occupied by one unit cell. 

What is our interest is to find out the number of atoms per unit volume. So, what is the 

number of atoms per unit volume? Therefore, number of atoms per unit volume unit 

volume is equal to 1 divided by 125 into 10 to the power of minus 24 per CC. So, this is 



nothing but 0.8 into 10 to the power of 22 per CC 0.8 into 10 to the power of 22 per CC 

or the number of atoms per unit volume is of the order of 10 to the power of 22 per CC. 

Number of atoms per unit volume in a semiconductor is typically 10 to the power of 22 

per CC. If each atom contributes one valence electron, then the number of valence 

electrons per unit volume is of the order of 10 to the power of 22. What is the number of 

valence electrons typically that we have? So, it is a quick calculation to get and estimate. 

So, I would like you to have this kind of practices to estimate very quickly starting from 

fundamentals. 
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So, number of atoms. So, if you take silicon for example, you know that the atomic 

number of silicon is 14, germanium most widely used semiconductors atomic number is 

32, gallium 31 and arsenic 33; atomic number Z. So, if you write the electronic 

configurations this is 1 S 2 2 S 2 2 P 6 3 S 2 3 P 2, you see 14. Valence shell by 

definition is the outer most shell which is either filled or unfiled, but the outermost shell 

where electrons are occupied; so 3 S 2 3 P 2. So, there are 4 electrons in the valence 

shell; so 4 electrons. That is why it is in group 4 right, germanium 32 1 S 2 2 S 2 2 P 6 3 

S 2 3 P 6 3 D 10 4 S 2 4 P 2; you see the fourth shell is the outermost shell and again you 

have four valence electrons. If you see gallium here which is 31 it has the same structure, 

same electronic configuration, but 4 S 2 and 4 P 1. So, this has 3 valence electrons, this 

has 4, this has 3 valence electrons and here as you know that gallium is a group 3 

element. 



Arsenic on the other hand will have the same configuration up to this, here we have 4 S 2 

4 P 3; so 5 valence electrons, the arsenic is in group 5. Silicon, germanium, gallium, 

arsenic, yesterday as I mentioned is the 3 5 compound, very important semiconductors in 

optoelectronics. Therefore, one atom has in this case 5 valence electrons, here 3, here 4 

and so on. In other words therefore, the number of valence electrons per unit volume is 

this number multiplied by number of valence electrons per atom; which means in general 

n, the number of electrons in the valence shell is per unit volume is of the order of 10 to 

the power of 22 to 10 to the power of 23 per CC. 

Let me come to the second issue. So, I have in this discussion I have made use of the fact 

that most of the useful semiconductors are crystalline; of course, there are amorphous 

semiconductors. But most of the useful semiconductors in optoelectronics are crystalline 

in nature. Let me use another fact, that our topic as you can see is energy band in solids. 
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So, solid is a state of matter state of matter. Matter is basically a collection of atoms 

collection of atoms and atoms comprise of a central positively charged nucleus nucleus 

and negatively charged electrons. The motion of constituents of an atom are described by 

quantum mechanics the laws of quantum mechanics. In particular, the motion of 

constituents are described by the Schrodinger equation. The spelling actually either you 

have to put two dots or Schrodinger Schrodinger equation I do not know how many of 



you are familiar with this, but basically Schrodinger equation is defined by H psi is equal 

to E psi H psi is equal to E psi where H is called the Hamiltonian. 
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H is called the Hamiltonian which means it is basically total energy operator total energy 

operator, which means it is an operator corresponding to the kinetic energy and potential 

energy; which means it corresponds to P square by 2 m plus V. Where P is momentum, 

m is the mass and V is the potential energy. If you replace this momentum here by the 

corresponding momentum operator part of the basic quantum mechanics, momentum 

operator which is minus i h cross del and substitute here. Then you will get the 

Schrodinger equation. So, this gives you h cross square by 2 m with a minus sign into del 

square plus V. So, this is H, multiply this by psi, the wave function which is equal to E 

time psi; where E is the energy Eigen values, psi are the Eigen functions and E are the 

energy Eigen values. There could be more than one Eigen energy values and therefore, E 

represents. 
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So, this is nothing but the Schrodinger equation which you can rewrite you can rewrite in 

the form del square psi plus 2 m by h cross square into E minus V psi equal to 0. For 

every given potential variation V you can find out an energy Eigen value, which gives 

the energy of the particle under consideration and psi being the wave function, H is 

Plancks constant, h cross is h divided by 2 pi H is Plancks constant and m is mass of the 

electron. If you are finding energy of Eigen values of electrons then m is the mass of. If 

you take an isolated atom isolated atom; for example, hydrogen atom. 

I am very quickly recalling all the basics that you have already studied. If you take the 

hydrogen atom it has a central positively charged proton here and electrons surrounding 

it as a cloud. So, the potential energy V is given by q 1 q 2 by r q 1 q 2 by r which means 

in the case of hydrogen, q 1 is this q 1 equal to 1 e; the quantum of electric charge and q 

2 is minus 1 into e, charge of an electron. Therefore, q 1 q 2 by r is minus e square by r; 

v is equal to minus e square by r. In C G S system you have an additional factor which is 

4 pi epsilon 0. If you substitute this v here you can find out the energy Eigen values for 

hydrogen atom. 
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So, this gives you the solution for hydrogen atom, gives you energy Eigen values which 

are E n is equal to minus m e to the power 4 divided by 8 epsilon 0 square H square into 

1 divided by n square. These are the energy Eigen values where n is equal to 1, 2, 3, 4 

etcetera correspond to the principle quantum number or energy levels of a hydrogen 

atom. Since, n is discrete it immediately means that E n is discrete. So, for hydrogen 

atom if you put values for this, these are all constants; mass of electron, charge of 

electron, permittivity free space, H is Plancks constant. So, this will come out to be 

minus 13.6 into 1 over n square e V. If you put n is equal to 1 that is the ground state, 

then you know that ground state of hydrogen atom is minus 13.6 E v is the energy of 

hydrogen atom. You may be wondering why I am discussing this. The point is if you 

take an isolated atom it is characterized by discrete energy levels. 

So, this is n equal to 1, n equal to 2, n equal to 3; actually the separation should increase 

because n square is in the denominator, it is n square, it goes as n square and finally, it 

goes to 0 which when n becomes very large this goes to 0. 0 is the free state vacuum 

state. So, as you go here they come closer and closer and closer and finally, that is the 

vacuum state. With respect to the vacuum state here you are saying that this is minus 

13.6 E v, these are the bound states of the atom. So, you have the positively charged 

nucleus which is surrounded by various orbits just showing randomly some orbits and 

energy corresponding to various shells and energy corresponding to various levels are 

what is given here. So, the ground state of hydrogen atom is minus 13.6. 



What we are interested is from this discussion is to see that an isolated atom is 

characterized by discrete energy levels; this is the point. So, I have taken just an example 

which already you have studied is the hydrogen atom. Let me recall the argument again, 

matter is a collection of atoms and solid is a densely packed collection of atoms. 
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If you take a gas at low pressure, the inter atomic separation you know that if you take a 

container, the gas at low pressure; then the gas molecules are continuously in a state of 

motion. The average inter atomic spacing depends on the pressure of the gas, lower the 

pressure larger is the inter atomic spacing. So, typically the inter atomic spacing a, if I 

want to call the inter atomic spacing a, is anywhere from the of the order of 10 or 100 

angstrom to 1 micron typically the inter atomic spacing that is between atoms in a gas. 

What is the size of an atom? The size of an atom, there is no fixed size of an atom, but 

the size can be estimated if you know that the ground state of hydrogen atom here has a 

radius here, which is called the bore radius is 0.52 angstrom. Which means the size is 

typically about 1 angstrom, you can say that the size of an atom is approximately 1 

angstrom. Of course, higher orbits will be, that is higher electrons will have the larger 

spatial extent but the size is typically 1 angstrom. When the inter atomic spacing, if you 

now consider 2 atoms, 1 atom sitting here and 1 atom sitting here. The inter atomic 

spacing here, the separation between these; when this separation d is large, then the 

electrons here do not see any effect due to the electric field. The electro static field here, 



the field here does not experience the field due to the other atom. Because that is quite 

far, there is hardly any interaction. 

But if they start coming closer, then the field here gets paltered because of the field here 

or the electrons here start seeing the second atom or they get influenced by this. The 

influence leads to splitting of the energy levels. The energy levels which were originally 

discrete, if you start bringing two atoms together then the energy levels split into 2. The 

outer ones are the more affected ones, because the inner electron shells are inside here; 

they are not seeing the influence of other atom. The outer electrons, I am just showing 

circular orbits like this, as you can see the outer orbits or outer electrons start seeing each 

other or the interaction is stronger there or the perturbation felt by the outer electrons is 

more. And therefore you start seeing splitting of the outermost electron energy levels. 

This is considering two two atoms, if you have a large number of atoms the levels here 

split into multiple levels. First point, when two atoms are well separated there is very 

little interaction between them and therefore, the entire collection of atoms are 

characterized, the entire collection is characterized by discrete energy levels. Because 

each atom has this energy level. Therefore, the entire collection is characterized by this 

discrete atomic energy levels. But if you start bringing them closer and closer, then the 

energy levels get paltered or splitting of energy levels take place; a loud levels become 

more than one; corresponding to one you now have several energy levels. And therefore, 

if the number increases this goes over to a band; so they go over (( )). As you decrease 

the inter atomic spacing the energy levels go over to bands; this is illustrated by the nice 

diagram which you generally see in books. So, this is the inter atomic spacing a inter 

atomic spacing versus the energy. 
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So, when the inter atomic spacing is very large. So, let me put some number, I will put 

the number 1 angstrom 10 angstroms; this axis is energy E. So, when the inter atomic 

spacing is sufficiently large, you have energy levels which are discrete. They are not 

equally space, I am just qualitatively illustrating. As you reduce the inter atomic spacing, 

the levels start splitting. You would have seen this diagram in mini books. So, what you 

have is a range of allowed energy levels. 

A qualitative explanation I am offering there are. So, semiconductors have an inter 

atomic spacing approximately 5 angstroms. So, if you go here let say 5 angstroms, what 

are these? These are the allowed energies, please see these energy levels correspond to 

allowed energy values. As the inter atomic spacing reduced, the allowed energy values 

became more, that is the there is a range of energy values corresponding to each level; a 

range of energy values. And as you reduced it further it started splitting further and in for 

some values they may also start over lapping with each other. 

Typically, for semiconductors where inter atomic spacing is of the order of 5 angstroms 

you can see therefore, in this energy axis if I draw the range of energy values which are 

allowed; please see this is the range of energy values allowed here. This is the range of 

energy values allowed here and this is the range of energy values allowed here. So, what 

do I have? I have a range of energy values, a range of allowed electron energy values 

inside a semiconductor and this is nothing but the bands. So, what you have are the band 



diagram that you see is basically this and the separation here where there are no allowed 

states correspond to the forbidden gap forbidden gap. 

I have written E g, but please remember the highest band which is completely filled is 

called the valence band. The highest band which is completely filled is the valence band 

and the next band is called the conduction band. And the energy separation the energy 

separation or the forbidden gap between the valence band and the conduction band is the 

band gap. There may be many more bands, but there are no electrons there and therefore, 

we have not concerned with that. So, a semiconductor is characterized by energy bands. I 

have given a qualitative explanation here. Let us make it little bit more quantitative, little 

bit more rigorous and see whether this is really true or not. 

Those of you have studied solid state physics, you have studied the kronig Penney 

model. If you consider a 1 D lattice if you consider a 1 D lattice. So, what I am showing? 

These are the atoms which are separated by an inter atomic spacing of a. Consider a 1 D 

lattice. If you consider an isolated atom, single atom what will be the potential energy 

variation? V is equal to minus q 1 q 2 by r. So, if you plot the potential energy variation, 

where r is the distance from the nucleus; then the potential energy variation looks like 

this. It is 1 by r variation, r is equal to 0 here at the nucleus; r equal to 0 so this is the 

potential energy variation, this is the 1 by r variation and minus. At r equal to 0, it tends 

to infinity; that is why you see I am sure all of you have seen this potential energy 

variation, this is for one atom. 
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If you have a series of a 1 D lattice of periodically placed atoms, then you will have a 

corresponding potential energy variation potential energy variation. If you solve this 

problem like in hydrogen atom you will get. So, this is the potential energy here E and 

you will get different discrete energy levels, permitted values of energy levels. So, this is 

E 1 E 2 E 3 are permitted values of energy levels. These are the discrete energy levels of 

the isolated atom but now what I am showing is a 1D lattice separated by a. 

When you have an isolated atom like a hydrogen atom with one electron, it is exactly 

soluble you have analytical solutions. But if you have many atoms with many electrons 

then it becomes a multi body problem and you cannot have analytical solutions for many 

such problems. But you can solve them numerically one or you make certain 

approximations. So, you may be familiar with the kronig Penney model; we just recalling 

what you have studied those of you have not studied do not worry. Basically we are 

interested in the concepts and results; finally, we are interested in the concepts. Because 

this is not part of this course; so we will not go into the analysis of this. But in kronig 

Penney model what he did was he approximated this potential variation by a potential 

well, a rectangular potential well, a periodic potential well and then you have this. So, a 

periodic potential well. So, potential energy variation here this is v and this is the 

separation between them. 



If you consider a single potential well, this is a particle in a potential box problem we 

study even in first year under graduate engineering. If you take a potential well here, this 

supports, analytical solutions this supports different discrete solutions E 1, the ground 

state, the second state and it may support depending on the height and the width it may 

support many solutions. For simplicity, let me take a potential well which supports only 

one solution. So, there is one solution here E 1, one allowed solution which is the 

fundamental mode, fundamental solution or fundamental state which is the ground state. 

And if you see the wave function it typically looks like this, it has a oscillatory behavior 

inside the well and evanescent well behavior outside the well. This is the ground state of 

particle in a potential well, a single well. 

If I bring a second well close to this, reasonably close to it so that they start interacting; if 

the separation here this is the separation, let me call this as d the separation. If this or let 

me call this as a, the well is of width d and separation a. If a is sufficiently large much 

greater than d, then the two wells are non interacting wells. So, this will have one 

solution here, this also has the same solution; if it is identical size and identical height 

then this also has a solution corresponding to the same energy value for non interacting 

wells, non interacting wells. Two potential wells which are non interacting or you you 

can imagine as it as two atoms which are well separated, non interacting. So, this is the 

potential well which is approximating this potential, actual potential varies like this. But 

it is approximated by a box, equivalent box because this has analytical solution, easily 

you can solve this. 

If you when a is much larger than d, there is no interaction between them. But if a starts 

reducing so each one of these is characterized by the Eigen state here, the fundamental 

solution or the ground state. When you start reducing this, that evanescent tail of this 

field here, this psi interacts with the evanescent tail of the psi here; if I want to call this 

as psi 1 and psi 2 they are actually same states, but the tail start interacting. They start 

overlapping which means there is an interaction between the wells. This is originally 

when a was much larger than d, they were non interacting wells when a started reducing 

they started interacting when they start interacting if you solve this double well problem, 

then you will get two solutions corresponding to this interacting double wells, now you 

get two solutions. That is one here this was the original level, let us say this was the 

original level E 1. Now, the new values are one above that and one below that. So, there 



are two allowed energy values, you have two solutions. Earlier there was only one 

solution, now you have two solutions; I do not wish go into the details because there are 

symmetric solutions, anti symmetric solutions and so on. However, what is important is 

if there was only one energy level initially when you have two interacting wells there are 

two solutions. If there are three interacting wells there will be three solutions and if there 

are n interacting wells there will be n solutions, n allowed states. 
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And therefore, if I plot if I plot, so what I am going to plot? Let me erase this. If I plot 

the number of wells here this is number of wells versus energy allowed energy E allowed 

energy e this is some state I am discussing about E 1. So, this was my E 1, original E 1 

when I had only one value of energy I had this; this is E 1. When I have number of wells 

two, then I have two allowed values; one slightly below and another slightly above; so 

two allowed energy states, if I have three wells. Please see the relevance I have 

considered a 1 D lattice where atoms are sitting along a line; they are like interacting 

atoms. So, equivalently each atom is characterized by a potential well. So, I have a series 

of interacting potential wells and I am now writing depending on the number of wells 

how many energy states are permitted. So, the allowed energy state for this three is here; 

one above, one below when I go to 4 then it is here one two three four. This is exactly 

numerically solvable this is not so you solve a Schrodinger equation for the four 

interacting wells; you will get the four solutions. 



These are solutions which are actually you can calculate the solution. As the number of 

cells increase so you go to 5 it becomes 1 2 3 4 5 and so on. So, the number of cells 

increase and when the number of cells become very large some n, then you see that this 

saturates to a very large number of allowed states; the number of allowed states here. 

Please see there is a discontinuity here in the axis because the number is very large, 

where I have shown discontinuity. Let me show this again 5 and this is number of wells 

this is some large number N; there are large number of states. So, this varies something 

like if I draw it leads to saturation and this separation here delta E is the width of the 

energy band. The corresponding width of the energy band that you get now there is a 

range of allowed energy values; because you have N interacting atoms, there is a range 

of allowed energy values. 

This delta E comes out to be the same that you get from kronig model, kronig Penney 

model. This calculation was not from kronig Penney model; this is calculation from 

quantum mechanics. So, the quantum mechanical calculation gives this separation as the 

same which you get from the kronig Penney model. So, what is the point in this 

discussion is that when you have a closely packed arrangement of atoms, periodically 

arranged atoms in a lattice, they are characterized by discrete energy band. This is 

corresponding to one energy level. 

Similarly, for the next energy level, if I had the next level E 2 there also I would have 

had I would have got this splitting into the band; corresponding to E 2. Before this 

discussion I qualitatively I have drawn that has to reduce the inter atomic spacing it 

increase the width of the energy level, discrete energy levels split into band; that indeed 

takes place. That if you calculate with number of wells, there is a range of allowed 

energy values. In other words corresponding to this energy level of a single atom in a 

solid you have energy band. So, these are the energy bands in solids. 
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We will stop here for the day. So, as you know ones we have the picture of energy bands 

in solids which I am sure you have studied. Then we tend to focus on the band diagram, 

energy band diagram where the semiconductor is characterized by a valence band and a 

conduction band valence band and a conduction band with an energy gap E g energy gap 

E g anywhere lying typically from about 0.1 E v to 3 electron volts for a semiconductor. 

Of course, there are wide band of semiconductors which have even more than 3, gallium 

nitride is a wide band gap semiconductor which has a band gap greater than 3, within 3.4 

electrons volts. 

Most of the semiconductors which we use in optical communication have an E g which 

is of the order of 1 electron volt, plus minus 1 electron volt. I am sure you are also 

familiar that the electrons in the conduction band, we will discussed more of this 

subsequently; combine with holes in the valence band to give out photons. In the next 

lecture, we will discuss about the E k diagram and see what are direct band gap 

semiconductors and what are indirect band gap semiconductors and why we need direct 

band gap semiconductors to realize sources. 

Thank you. 


