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We have been discussing the JWKB approximation and I have given the solutions of the 

JWKB, in the JWKB approximation of the differential equation. Today, we will continue 

our discussions on that. We will consider one small problem in tunneling probability 

calculation. Actually, we will assign a problem and then we will discuss the generality of 

the WKB approximation. And, we will show that it can be used to solve a general class 

of differential equations. 

Finally, we will give a heuristic treatment of the justification for the connection 

formulae. So, first we will start with the tunneling through the barrier problem, which we 

had discussed in considerable detail. And, we had considered a potential energy 

variation, which was something like this. 
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So, this is the V of x, a particle of energy E of mass mu is incident and this is the energy 

level and there were two turning points. Now, the k square of x; k square of x is equal to 

2 mu by h cross square E minus V of x. So, since it is the inverse of minus sign of x, so k 

square of x, this is the variation of k square of x. And, x is equal to a and x is equal to b 

are the turning points. 

So, here you will have oscillatory solutions, here you have exponential solutions and 

here you have again oscillatory solutions. So, what we did was in region three, we gave 

as, we wrote down a solution like this: A under root of top k sin of integral b to x k d x 

plus pi by 4.  

Actually we wrote the solution. We can write down the solution as sin and cosine. So, 

instead, what we did was we consider an outgoing plain wave. So, we had exponential i 

times this. So, actually I should write it down as E to the power of i integral b to x k of x 

d x plus pi by 4 and wrote it as cosine plus sin. Then, used each of them to hop from this 

turning point here and then we looked at the turning point x is equal to A. And then, 

when we hopped through this turning point and obtained solutions here. and, the region, 

the solution and the region 1 was expressed as an incident wave plus as a reflected wave. 

And, we compared the coefficients and we found out that the transmission coefficient 

was equal to e to the power of minus theta square, where theta was equal to exponential. 

So, I am sorry, the transmission coefficient was theta square and theta was equal to 

exponential minus a to b kappa of x d x because in the region of a to b, k square of x is 

negative. And so, therefore, we define kappa square of x which was equal to minus k 

square of x.  

And, using that, and therefore using this relation we discuss the two, three problems; 

one, the tunneling through a parabolic barrier, then we discussed the tunneling through 

the triangular barrier and also to the alpha d k problem. But, I wanted to tell you today 

that, if we have a double potential like this and which has two peaks like the one that I 

have shown here and I assume the energy E and the V of x is variation like this. Then the 

corresponding k square of x, which is given by k square of x is once again 2 mu by h 

cross square E minus V of x. And, it will be something like this. So, there will be four 

turning points now. 



Now, then what we have to do is, we have to first start with the solution in the region 

five. So, psi in region five will be an outgoing wave. So, we write down this as F by root 

k e to the power of i integral b to x k d x plus pi by 4. So, I write the solution here, which 

I write as F by root k, cosine of the same argument, cosine of this argument. So, let us 

suppose this is, say I write as capital phi plus i times sin phi.  

And then, use connection formulae to go to the region four, then we look toward the 

turning point a and I go over to the region three and then we look to turning point minus 

a. And then, use the connection formula formulae to get to region two and then to region 

one. It is a very systematic process, very straight forward process. And, I would urge all 

of you, who want to learn the tricks of using the connection formulae, work this out 

yourself. It will help you to use the WKB JWKB approximation with tremendous 

efficiency and simplicity. It is very simple. You just have to get used to using these 

connection formulae.  
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And, finally in region one, you express the solution as A times the coefficient of the 

incident wave plus E to the… and then you have the B, which is the coefficient to the 

reflected wave. And then, you will have F by A whole mod square will be tunneling 

probability. And, if you calculate that, you will find that the tunneling probability comes 

out to be…Let me write this expression. The, if you have a double humpty and these are 



the two turning points minus a minus b, plus a and plus b. This is the V of x variation, 

this is the V of x variation as a function of x. 
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So, if you work this out and I would urge all of you to work this out. The tunneling 

probability comes out to be 4 by 4 sin square alpha plus 4 by theta square plus theta 

square by 4 cos square alpha. And then, similar expression for T; and, you will find that 

R plus T is equal to one, so that the reflection coefficient is 1 minus T.  

What are the values of alpha and theta? The value of alpha is minus a to plus a. sorry. 

This is minus a and this is minus b. I am sorry. So, you have here; let me let me do this 

here. So, this is minus a and this is minus b. I hope all of you can see this. All of you can 

see this. So, the transmission coefficient becomes, so the alpha is equal to minus a to plus 

a. And, between minus a plus a, k square of x is positive. So, this is k of x d x. And then, 

theta is defined to be equal to exponential minus a to b kappa d x. As I mentioned to you, 

you first start with an outgoing plain wave here, outgoing wave here, then you hop to this 

region, then you hop to this region, then you hop to this region, then you hop to this 

region. And, in each hopping, you use the w JWKB connection formulae. 

The remarkable feature of this simple formula is that, when alpha is equal to n plus half 

pi, when alpha is equal to n plus half pi, then cos square is equal to 0, sin square alpha is 

1. So, T is equal to 1. These are known as the Fabry-Perot transmission resonances. 

Fabry-Perot transmission resonances. And, no matter what the shape of the potential 



variation be. The transmission coefficient is unity. These corresponds to, these 

corresponds, this is alpha is equal to n plus half pi. These are the Eigen values 

corresponding to the well. 

So, those energy Eigen values which form for this particular well, you have transmission 

resonances. These are the modes, which resonate back and forth between the well. And, 

you have an unity transmission coefficient. So, to conclude that, for a double well, 

double hump potential well of the type shown here, you have, sorry, double. So, the… I 

would advice all of you to work out step by step, the tunneling probability.  

It is the details, if you are unable to do that, the details are given in our book by myself 

and professor Lokanathan on Quantum Mechanics fifth edition. So, the details are there 

also, but I would like to, like you to work this out. And, obtain an analytical expression 

for the tunneling probability. And, this tunneling probability becomes equal to 1, 

irrespective of the shape of the potential structure when alpha becomes equal to n plus 

half pi. And, those are known as the Fabry-Perot transmission resonances. 
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Now, we then, we then go over to calculating justifying the connection formulae. 

Justifying the connection formulae. For example, if you have a k square of x variation 

like this, this is the k square of x variation, k square of x variation. And, you have a 0, so 

that on the right side of the turning point, you have exponential solution. And, on the left 

side, k square of x is positive. So, we have sin and cosine solution. And, we had said 



without proof that 2 by root k, let us suppose the turning point is x is equal to a, then 2 by 

root k sin of x to a k d x plus pi by 4. It goes over to an exponentially decaying solution; 

minus exponential minus a to x kappa d x. And similarly, we had 1 over root k cos of x 

to a k d x k of x d x plus pi by 4. It goes over to the exponentially amplifying solution; 

so, 1 over root k exponential plus integral a to x kappa of x d x. 

Now, I want to justify this. Now, near the turning point, near the turning point I can 

assume that the variation of k square of x is linear. So, the equation that we wanted, that 

we have been wanting to solve is d 2 psi by d x square plus k square times psi of x is 

equal to 0. k square of x, actually k square of x. 

Now, we assume that in the vicinity of the turning point. So, at x, around x is equal to a, 

we assume that k square of x. In this case, it is decreasing function of x. So, we say that 

this is equal to minus alpha of x minus a approximately, so that in the vicinity of the 

turning point, we assume a linear variation for k square of x. 
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So therefore, my Schrodinger equation or the wave equation becomes d 2 psi by d x 

square minus alpha into x minus a psi of x is equal to 0. Now, I make a, I make a 

transformation I make a transformation that z is equal to alpha raised to the power of 1 

by 3 into x minus a. Then d psi by d x, then d psi by d x will be d psi by d z into d z by d 

x. That is, alpha to the power of 1 by 3, then alpha to the power of 2 by 3 and then you 

will have x minus a is z by alpha to the power of 1 by 3 and so on. You do that and you 



will obtain d 2 psi by d z square minus z psi of z is equal to 0. This equation, this 

equation is known as the Airy equation after the name of the British astronomer G. B. 

Airy.  

This is and the solution of this, the rigorously correct solution of these equations is 

known as the Airy functions. Now, first let me write down. So, here in this case k square 

of z is equal to minus z. So, for z greater than 0, I must write k square of z is equal to 

minus kappa square of z. And, kappa square of z will be equal to plus z. So that, for z 

greater than 0, this equation becomes d 2 psi by d z square minus kappa square of z psi 

of z is equal to 0. Now, since kappa square of z is equal to z, so kappa of z is square root 

of z and square root of kappa z is equal to z to the power of 1 by 4. Now, the WKB 

solutions of this equation are 1 over under root of kappa 1 over under root of kappa 

exponential plus minus integral z kappa of z d z. So, if I integrate this kappa of z d z, this 

will be exponential plus minus 2 by 3 z to the power of 3 by 2. And, outside it will be z 

to the power of 1 by 4.  
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Therefore, therefore, the, of this equation d 2 psi by d z square minus z psi of z equal to 

0. As z tends to infinity, the JWKB solutions are z tends to plus infinity. JWKB solutions 

are plus minus 1 over z to the power of 1 actually z to the power 1 by 4 exponential plus 

minus two-third z to the power of 3 by 2; small z everywhere. 



Now, for z less than 0, this is positive. Minus z is positive. So, I must write it as d 2 psi 

by d z square, plus k square of z is equal to psi of z equal to 0, where k square of z is 

defined to be equal to minus of z. And then, as z tends to minus infinity, z tends to minus 

infinity, the JWKB solution are the JWKB solutions are 1 over mod z because now it 

becomes minus z mod z 1 to the power and then sin or cosine, sin and similarly cosine 

and two-third plus minus you can have, mod z to the power of 3 by 2 plus phi. And, 

similarly you can have the cos solutions. 

So, the… So, of this equation, of this is the, as I mentioned this is the Airy equation. This 

is the Airy equation and obvious Airy equations. The WKB solutions are exponential this 

and that. Now, of the Airy equation, the rigorously correct solutions are denoted by A i 

of z and B i of z. These are known as the airy functions, which are related to Bessel 

functions. which are related to Bessel functions. 
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Now, the airy functions are the this solid line. You see, actually this is not in terms of z. 

This is the solution of the equation d 2 y by d x square minus x y of x. So, please replace 

z by x. So, of A i of x, the two independent solutions are A i of x and B i of x. And, A i 

of x has a asymptotic form as x tends to minus infinity, which is given by this. This I am 

not proving. But, it can be obtained from the asymptotic forms of the Bessel functions, 

which must be known to all of you.  



Similarly, as x tends to plus infinity, this is the asymptotic form. If you can read 

properly, this is exponential minus 2 by 3 x to the power of 3 by 2. Now, these 

asymptotic forms are the JWKB solutions are the JWKB solutions. And so, therefore the 

sin term goes over to this term. 
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Let me first also show you the B i function. The other independent solution of this 

equation is the B i function, which are known as the Airy B i function. And, the 

asymptotic form is a cos plus pi by 4 as x tends to minus infinity. And, these asymptotic 

forms are plotted if you can see this as a dash line. You see the asymptotic solutions, 

which are just WKB solutions, they go to infinity at x is equal to 0; because this is the 

turning point; x is equal to 0 is the turning point. 

So, here also the asymptotic solutions are shown by the dash line. And, they go to 0. 

And, the asymptotic solutions are the JWKB solutions. Here, the asymptotic solutions of 

B i of x is actually, I should have written B i of z goes over to 1 over root pi z to the 

power of 1 by 4 e to the power of 2 by 3 z to the power of 3 by 2. And, this also, I should 

have written z.  

So, these are the same solutions that we had written down earlier. You see, exponential 

plus minus 2 by 3 z to the… So, one can say that cos plus pi by 4 goes over to 1 over 



root pi z to the power of 1 by 4 e to the power of 2 by 3 z to the power of 3 by 2. This 

suggests, this suggest that, since these are the WKB solutions, therefore 1 over root pi k 

of z, under root k of z cos of integral k of z d z. In this case, the turning point is at 0. So, 

from turning point say say z to a, that is 0. And, the turning point is, say a. This plus pi 

by 4 goes over to an exponentially amplifying solution. So, this is under root of kappa z e 

to the power of integral 0 to z. 

In this case, therefore a to z kappa z d z; so, this is the, we have we have tried to justify 

the connection formulae because what we did was, we assumed the in the vicinity of the 

turning point, the solution to be the variation to be linear. When we assume the k square 

of x variation to be linear, then the solutions are rigorously A i of x and B i of actually 

not x, B i of z; where z is equal to alpha to the power of 1 by 3 into x minus a. Then, 

these are the WKB solutions. And, we showed by comparing the WKB solutions with 

the actual, with the exact asymptotic forms. We found that the sin from x to a plus pi by 

4 will go over to an exponentially decaying solution and the cos term will go over to an 

exponentially amplifying solution. 

So, this is the justification. We assume this to be linear, then the solutions become Airy 

functions. And, by looking at the asymptotic forms and comparing it with the WKB 

solutions, we write the connection formulae. And, as we have seen for to use these 

connections formulae, we will get exact results for the harmonic oscillator problems. 

And, even for the linear potential, if this gives very accurate results. We calculated the 

tunneling probability using the life time of alpha particle decay and showed the extreme 

variation. And, there are many comparisons that have been made to compare the validity 

of the JWKB approximation. And, it has been found as long as k square of x; that is, the 

potential energy variation is reasonably smooth, then JWKB approximation gives a fairly 

accurate solution. 
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We finally, end up by saying that a general differential equation of the type p of x d 2 y 

by d x square plus q of x d y by d x plus r of x y of x d x equal to 0. I can always write 

this. I can always write this in the form of d 2 y by d x square, plus f of x d y by d x, plus 

g of x y of x. Obvious that, f of x is equal to q by p and g of x is r by p.  

Then, we make two transformations. We make that, let us suppose that psi of x 1 psi of x 

is equal to y of x exponential half integral f of x d x. I leave this as an exercise for you. 

And, if you assume psi of x to be given by this and then you differentiate this and use 

this equation, you will find that d 2 psi by d x square satisfies this equation; k square of x 

psi of x is equal 0, where k square of x is now defined as g of x minus half d f by d x 

minus 1 by 4 f square of x. 

So, what I was trying to tell you is that any second order differential equation of the type 

shown here, can always be transformed to any equation of this type. Any secondary 

second order differential equation of this form can always be transform to an equation, 

rigorously to an equation of this type. And then, we can use the WKB the w k b solutions 

to obtain approximate solutions of this equation. In fact, one can take the Bessel equation 

as an example and obtain solutions and they are, they often agree quite well with the 

exact solutions. 

So, first you take, you look at any second order differential equation, try to transform it. 

Transformed airy differential equation of this type can be transformed to an equation of 



this type. And then, then one can obtain the WKB solution of that. So, in principle, we 

have given a recipe for obtaining a JWKB solution of a second order general; second 

order differential equation of this type. And hence, therefore w k JWKB approximation 

forms of very powerful method for solving the second order differential equations.  

That concludes our discussion on the WKB approximation, in which to summarize this is 

a very powerful method for solving a second order differential equation. In which, k 

square of x is assume to be a smoothly varying function. It should not be very rapidly 

varying. It should not have too many zeroes because if it has too many zeroes, then you 

have to hop from one turning point to the other. But that, in principle, is possible as long 

as the variation of k square of x is fairly smooth. And therefore, it has been extensively 

used not only in Quantum Mechanics, but in Wave Guide theory in Plasma Physics and 

in in many other areas; diverse area of Physics and Engineering.  
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Our next lecture, in this lecture itself we will continue our discussions on developing and 

approximate method and that will be the Perturbation theory. We will continue our 

discussions on yet another very powerful approximate method. And, the method is 

known as the Time Independent Perturbation Theory. So, we have here in the Time 

Independent Perturbation Theory. We write the Hamiltonian as a sum of two parts; H is 

equal to H naught plus H prime.   



Now, H naught is the Hamiltonian for which I know the solutions. So, H naught u n is 

equal to E n u n. For example, H naught may be the harmonic oscillator problem, like 

minus h cross square by 2 mu d 2 by d x square plus half mu omega square x square. 

Now, … we know the solutions. So, what are E n and u n? The E n, we know that is 

equal to n plus half h cross omega and u s of n are the normalized Hermite gauss 

functions the Hermite gauss function or H naught maybe the Hamiltonian, corresponding 

to the Hydrogen atom problems. 

Now, therefore H naught is the is the portion of the Hamiltonian for which the solutions 

are known. Then, we add to it another term. And then, we try to calculate the effect of 

this term. So, for example, we have a charged oscillator. We put it in an electric field. 

And then, there is a Hamiltonian, which is something like minus, say e times the electric 

field times x. 
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So, this is the perturbation or, you may have something like the H naught may represent 

the hydrogen atom problem, in which it is given by h h cross square by 2 m del square or 

mu actually mu, del del square minus z e square by R. This is v of R. So, for this 

problem, we know that u s of n is equal to R n l Y l m. Actually, these are three 

subscripts here. These are these are the wave functions. These are the wave functions.  

This n and this n are different. So, this maybe something like say, we may write as u m 

or u p. u p u p is a combined form of these three. And, the E p, the energy Eigen values 



corresponding to be real state will be something like, the energy for the first state divided 

by n square. And, E 1 is about minus 13.6 electron mu. So, I know the Eigen values 

Eigen values and Eigen functions corresponding to H naught. 

Now, I put the hydrogen atom in an electric field. And, they will be a perturbation or in a 

magnetic field. There will be a they will be an additional term, which will represent the 

interaction with the electric field and the magnetic field.  

So, what will be the effect on the energy Eigen values? This is an extremely important 

problem in Quantum Mechanics as well as in Atomic and Molecular Spectroscopy. So, 

and, in any any, in most problems of interest, you cannot obtain a direct solution of the, a 

closed form solution of the Schrodinger equation. And, you have to apply an 

approximate method. One approximate method, we have already discussed. And, that 

was the JWKB method in which k square of x was assumed to be as slowly varying 

function. 

Here, what we assume is that we have a solution, which is known to us, which is closed 

to the electric or magnetic field is weak enough, so that it makes a small change in the 

Eigen value structures of H dot. So, what we do is the method the method involves in 

writing the... Let me write it on a fresh page. 
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 So, our objective is to solve this equation; H psi is equal to W psi. Where H, I write as H 

naught and I introduce a parameter g, if for example, H prime is due to the perturbation, 

due to the electric field, so it maybe the parameter is something like the strength of the 

electric field. So that, when the electric field goes to 0, you have the original 

Hamiltonian. So, g is a parameter, which is assumed to be less than one. 

So, what we do is, we make a parametric expansion of psi and W. So, our objective is to 

obtain a specific state. Let us suppose, the n th state. So, our objective is to find W n and 

psi n. However, we know the Eigen values and Eigen functions of the operator H naught. 

So, the solutions of this are known. So, H naught u n is equal to E n E u n. So, this we 

know. 

So, therefore let me state the problem clearly. The hydrogen atom is put in an electric 

field or in a magnetic field. Because of the presence of the magnetic field, it causes an 

additional term; it results in an additional term in Hamiltonian. If I exclude this term if I 

exclude this term, then I know the solution of the Eigen value equation corresponding to 

H naught. 

This may be something like the hydrogen atom problem or the harmonic oscillator 

problem or a particle in a box problem. So, these solutions, the solution of the Eigen 

value equation corresponding to H naught are known to us. Our objective is that when 

we apply this perturbation, what will be the value of W n and what will be the value, 

what will be the corresponding Eigen function? 

So, what we do is, we introduced the parameter g as I mentioned. And then, make a 

parametric expansion; that is, write psi n is equal to psi n 0 plus g psi n 1 plus g square 

psi n 2 etcetera. And similarly, we write W n is equal to W n 0 plus g W n 1 plus g 

square and so on. And, I substitute this. So, this let be equation 1, this be equation 2, this 

be equation 3, this be equation 4 and this be equation 5. 

So, we substitute 2, 4 and 5 in equation 1. So, we get, please see this. H naught plus g H 

prime multiplied by psi n 0 plus g psi n 1 plus g square. Let me neglect the higher order 

terms right now. It is equal to bracket W n is W n 0; the zeroeth order term plus the first 

order term multiplied by psi n 0 plus g psi n 1 plus this. 
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Now, I multiply this out and collect power, collect terms of different powers of g. So, 

you have you have the term which is independent of g is, H naught psi n 0 plus g will be 

g will be H naught psi n 1 H naught psi n 1 plus H prime psi n 0, plus terms which are 

proportional to g square, plus terms which are proportional to g cubed and so on. This 

will be equal to the first term will be is equal to W n 0 psi n 0 plus the term which is 

proportional to g, W n 0 psi n 1 plus W n 1 psi n 0, plus term which are proportional to g 

square, plus terms which are proportional to g cube.  
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Now,… g tends to 0. And, there is always possible because we let the, let us suppose the 

external electric thing goes to 0. So, then all the terms cancels out. And, we had the 

zeroeth order equation, H naught psi n 0 is equal to W n 0 psi n 0. This is the zeroeth 

order equation. Zeroeth order equation. And, this is the same Eigen value equation, as for 

the H naught because for H naught, we wrote H naught u n is equal to E n u n. So, 

therefore we first consider non-degenerate states. And, I will tell you the difficulty that 

we encounter, when we consider degenerate states. 

So, n is equal to 1 is this state or n is equal to 0, then n is equal to 1 or n is equal to 1 and 

so on. Each state is a non-degenerate state. Then, I can write this down immediately that 

W n 0 is equal to E n and psi n 0 is equal to u n. This is the zeroeth order solution; which 

is obvious because there is no electric field or magnetic field or something, there is no 

perturbation. 

Now, then we have, so we said that this term is equal to this term. So, then these two 

terms cancel out. Then, we divide the whole equation by g. So, this goes out, this goes 

out, this goes out, this becomes g square, g square and g. 

So, if I now make g tends to 0, then this is the first order term. So, the first order term 

becomes, you see becomes, H naught psi n 1 plus H prime psi n 0; which we have 

written as u n W n 0 is E n psi n 1 plus W n 1 u n. This is my first order equation. This is 

my first order equation. 

Similarly, I can write down my second order equation also. But, we will restrict 

ourselves to only first order perturbation theory; because in most analysis, one uses first 

order perturbation theory. Then, what I do is that, we have we have already assumed that 

the, we are considering the perturbation to the n th state whose Eigen function is known. 

Psi n 1, I do not know. But, I know that u n form a complete set of functions. Therefore, 

let us expand it. Psi n 1, we can always expand psi n 1 as a n 1; superscript present that, 

we are considering first order of perturbation, times u n. 

So, multiply this H naught, a n is a constant. So, H naught u n is equal to E n u n. So, H 

naught operating on this will give me summation a n 1 E s of n, u s of n, plus H prime u 

n is equal to E n summation a n 1. Actually, I am expanding. So, I must put it here as m 

because this is the dummy variable. So, this is A m 1 E m u m. I am considering the 



perturbation to the n th state. So, m n is fixed. So, this is a m 1 E n a m n 1 and u s of m 

plus W n 1 u s of n. 

Now, I multiply by u k star and integrate. And, I know that these Eigen function for the 

non- orthonormal set; that is, u k star u m d tau is equal to the chronicle delta function. 

Remember that the harmonic oscillator functions also satisfy this orthonormality relation, 

where the integration is over the dash space. 
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So, therefore if I multiply the entire equation by u k star, so we multiply the entire 

equation by u k star on the left and then integrate. So, the first term will become 

summation a m 1 E m delta k m plus H prime k n is equal to E n summation a m 1 delta 

k m plus W n 1 delta k n; where, H prime k n is known as the k n th matrix element; is 

the u k star H prime u n d tau. Symbolically, this is more convenient to write this as k H 

prime ket n. This is the k nth matrix element of this.  

So, therefore if I sum the series, only the m equal to k term survives. And, so we have a k 

1 E k plus H prime k n is equal to a n a k 1; because only the m equal to k term will 

survive and W n 1 delta k n. So, case 1, if I assume that k is equal to n. That, I multiply 

by u n star only. So, this term and this term cancel out. This becomes 1.  

And then, W n 1 becomes H prime n n. So, this is the first order perturbation to the 

energy. So, this is u n star H prime u n d tau. And symbolically, it is n H prime n in the 



bracket notation. When, k is not equal to n, then you will have this term goes to zero. 

And, if I take, if I take the others, so H prime k n is equal to E n minus E k into a k 1. 

So, you can use this, you can use this to calculate a k 1, which will be equal to H prime k 

n divided by E n minus E k. So, we have the coefficients because psi n 1 was equal to a k 

1 u k. Actually, we had written a m 1 u m. This is a dummy variable. So, it does not 

really matter. But, here, and this I will discuss it greater detail in my next lecture. One 

see is that if, k is not equal to n, but E n is equal to E k; that is, if we have, let us suppose 

if 2 4 degenerate state, that is about, this is the ground state, this is a 2 4 degenerate state. 

So, this is u 0.  

This is u 1 and u 2. u 1 and u 2 belong to the same energy state. So, that is a degenerate 

state. Then, this tells us that H prime k n must be 0. And, this I will explain it in greater 

detail in my next lecture. 
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That, you see in degenerate state, if let us suppose u 0 is a ground state and the second 

state is 2 4 degenerate, then u 1 is a possible wave function, u 2 is a possible wave 

function; any linear combination is also a possible wave function. So, if that is so, then 

this relation E n minus E k times a k 1 is equal to H prime k n, says that I must choose 

such linear combination for which H prime k n, that is H prime 1 2 must be 0. That is the 

representation should be such that, the H prime in the subspace generated by the 



degenerate state vectors. …the H prime must be diagonal. And then, only the diagonal 

elements will give the energy Eigen values.  

So, with that, if you have not followed this, we will give more illustrations. We will 

have, so the basic formulation is completed; that the first zeroeth order term is equal to E 

n, of course. So, these are the E 0 and E 1 and things like that. This we know. Then, the 

first order correction W n 1 is equal to; you just have to calculate the matrix element. 

First, we will do for non-degenerate states. And then, we will say, what precaution do we 

have to take for degenerate state perturbation theory. Thank you. 

 


