
Basic Quantum Mechanics 
Prof. Ajoy Ghatak 

Department of Physics 
Indian Institute of Technology, Delhi 

 
Module No. # 09 

The JWKB Approximation and Applications 
Lecture No. # 04 

The JWKB Approximation: Tunneling Probability Calculations and Applications 
 

In our last lecture, we had discussed, we had considered applications of the tunneling 

probability formula to problems of practical interest. We first had considered the 

parabolic potential and then we had started with a linear potential. So, we assume that I 

have a triangular barrier as it is written here. 

 (Refer Slide Time: 01:01) 

 

So, the potential energy function is 0 for x less than 0, and then it decreases linearly from 

a value V 0 by V 0 minus alpha x, and then beyond this point it is 0. Actually, it does not 

really matter, whether it tapers off like this or whatever happens here it does not really 

matter, because it is the variation of V of x between the two turning points that is 

important. 



So, what is my kappa of x integral? So, the tunneling probability, as you know that 

exponential of minus G, where G is equal to two integral, from the turning points, a to b. 

So, here it is 0 to a, kappa of x d x and what is kappa of x? You have kappa of x is equal 

to 2 mu by h cross square under the root V of x in this region, between x is equal to 0 and 

a, V 0 minus alpha x minus E, raise to the power of half. If I take these, so what I will do 

is, that, I will write this down as, I will take alpha outside. So, this will be 2 mu by h 

cross square and alpha if I take outside, 2 mu alpha, then this will be V 0 minus E 

divided by alpha minus x, raise to the power of half. 

So this is the value of the turning point (Refer Slide Time: 03:33). If this is the turning 

point b, then V 0 minus alpha b must be equal to E. Therefore, if I take b, so b is equal to 

V 0 minus E divided by alpha. So, this quantity is my turning point where the value of x 

at which the second turning point occurs. 

 (Refer Slide Time: 04:23) 

 

Let me write it down once again that T is equal to E to the power of minus G; G is equal 

to 2 integral 0 to b, actually it should not be a, it should be turning point b (Refer Slide 

Time: 04:33), 0 to b kappa of x d x and my kappa of x is equal to 2 mu alpha h cross 

square under root of b minus x. So, the integration is really very simple. 

Therefore, the integral from 0 to b, so this will be integral, I hope this is clear, 0 to b d x. 

I must multiply this left hand side also by d x, and this will be equal to 2 mu alpha by h 



cross square will sit outside and the value of b as I had mentioned in my previous slide is 

V 0 minus E divided by alpha. 

This is 2 by 3 with a minus sign, because and then b minus x rise to power of 3 by 2. 

This is the very simple straight forward integration from and then the upper limit, the 

integrand itself is 0 because x is equal to b, so that the upper limit it is 0. I get 2 by 3 b 

raise to the power of 3 by 2. So, I get this equal to 2 by 3 b raise to the power of 3 by 2. I 

will have 2 mu alpha by h cross square. So, 1 over alpha raise to the power of 3 by 2, 

because V rise to the power of 3 by 2 will have, and if I take V 0 also outside, so V 0 

raise to the power of 3 by 2 and that is 1 minus E by V 0 raise to the power of 3 by 2. 

If this alpha to the power of 3 by 2 so this becomes 2 by 3. So, 2 by 3 under root of 2 mu 

V 0 cubed, because if I take it inside the integral 2 mu V 0 cube and this is alpha to the 

power of half, this is alpha to the power of 3 by 2, so it is alpha cube will be under the 

integral, so this is alpha square h cross square, multiplied by 1 minus E by V 0 raise to 

the power of 3 by 2. 

Therefore, the tunneling probability is WKB approximation, will be equal to E to the 

power of minus 2. So, exponential minus G and that is minus 4 by 3 times the whole 

quantity and that is a dimensionless parameter. So, this is dimensionless. It is always 

convenient to put parameters in terms of dimensionless parameters. It is multiplied 1 

minus E by V 0 raised to the power of 3 by 2. 

 (Refer Slide Time: 08:16) 

 



This is the tunneling probability. Let me write it down again, so that you can write it 

down. T is approximately in the JWKB approximation exponential minus 4 by 3 under 

the root 2 mu V 0 cubed divided by alpha square, h cross square, 1 minus E by V 0 raise 

to the power of 3 by 2. 

This is the tunneling probability for a particle of energy E (Refer Slide Time: 08:47), 

incident from the left and seeing a triangular barrier and the maximum potential is V 0. 

So, what we said was before we discussed in our last lecture what we said was that the 

electrons in a metal like sodium or potassium, the valence electron is almost free. 

In fact, quite sometimes back, we had developed the free electron theory of metals, and 

we assumed to be the electron to be completely free inside the metal. Now, we assume 

that this metal is at absolute 0. Now, electrons (( )) (Refer Slide Time: 09:34) statistics, 

so that we know that the probability of occupation of the electron is given by the Fermi 

Dirac distribution, which at absolute 0 is 1 for E lying between E less than E F 0 and is 

equal to 0 for E greater than E F 0. 

This is the E F 0 is known as you probably know this as the Fermi energy and it depends 

on the temperature also. All states and all of the electrons inside the metal, so for x less 

than 0, you have the metal surface, and above the metal you apply an electric field, the 

electrons are free and there is a work function. 

So all states up to this point (Refer Slide Time: 10:34) up to this level that is E F 0 are 

filled up. Now, the each electron depending on its energy seize this potential barrier and 

in front of it, so beyond the metal surface, there is an electric field that is applied, 

because of which it sees a potential of the type, a linear type of a potential, and there is a 

certain probability that it can tunnel through the barrier. This phenomenon is known as 

the cold emission of electrons. 

One is the thermionic emission, if you heat the electrons, then the electrons get sufficient 

energy to get out of the metal. On the other hand, this is a purely, cold emission is a 

purely quantum mechanical phenomenon, and which we can understand through the 

simple analysis that we had carried out. It is a consequence of tunneling through the 

barrier of the electrons. 



Let me calculate the current density that will be produced. What we will do is that the 

current density will be given by, say if the charge of the electron is let us suppose minus 

q e times (Refer Slide Time: 11:55), the number of electrons per unit volume, whose x 

component of the momentum lies between p x and p x plus d p x. So, let me write this 

down that this is number of electrons per unit volume, whose x component of the 

momentum, whose p x lies between p x and p x plus d p x, and then the velocity, this is 

the number per unit volume multiplied by the velocity that will be the current p x by the 

mass of the electron. Each time it hits the surface there is a small probability of it getting 

tunneling through the barrier. 

So, the total number of electrons that will be coming out will be the integral from this 

and the corresponding say, p naught, p naught is such that p naught square by 2 m is 

equal to E F naught. That is the upper limit. Now, we will just outline you because this is 

not part of quantum mechanics so we will outline you the method for calculating this 

integral. 

 (Refer Slide Time: 13:47) 

 

Now, n of p x, number of electrons, whose x component of the momentum, number of 

electrons per unit volume whose x component momentum lies between p x and d p x is 

equal to 2 by h cubed, it is just a simple phase space calculation, d p x double integral d p 

y d p z and this integral is calculated such that the 0, the p y square plus p z square by 2 

m is less than E F naught minus p x square by 2 m. 



 E F naught is the maximum energy of the electron and p x square plus p y square plus p 

z square by 2 m is the total energy of the electron. So, the maximum value of p y square 

plus p z square by 2 m will be E F naught minus this. So, you can transform this to the 

polar space, carry out this integration, and then one finally, obtains this equal to 4 pi m 

by h cubed E F naught minus p x square by 2 m, d p x. 

We have an expression for n of p x d p x, I substitute it here (Refer Slide Time: 15:39) 

multiplied by p x and then multiplied by this term and carry out the integration. One has 

to carry out the integration little approximately, the details are given in our book, but 

since it is not really quantum mechanics, so I will give you the final result. The final 

result is J is equal to A 0 F square; F is the electric field, e to the power of minus B 0 by 

F and the F is defined like this. Remember, that the potential energy function was equal 

to V 0 minus alpha x, so alpha is equal to modulus of the electron is the multiplied by the 

electric field. 

The reason, why we have used the symbol F, rather than for the electric field E, so that it 

does not get confused with the energy that we have. This formula, so here A 0, if you do 

the calculation A 0 comes out to be mod q square by 8 pi h capital phi, where phi is the 

work function, that this is E F naught and this quantity is the work function phi (Refer 

Slide Time: 17:09). This quantity is the work function and then B naught is equal to 4 by 

3 q raise to the power of half, 2 m by h cross square raise to the power of half, phi raise 

to the power of 3 by 2.  

So, this formula for the current density was one of the early, the first of course, the 

example of the quantum mechanical tunneling phenomenon, was the alpha decay 

problem, which we will consider next and this formula was given by Fowler and 

Nordheim in early 1930s. So, this is known as the Fowler Nordheim field emission 

formula. Let me write it down. Fowler Nordheim Field Emission formula, it does explain 

the qualitatively, because of the many approximations that we have made in the 

experimental data in the case of some metals. 

  



(Refer Slide Time: 18:47) 

 

So, to conclude, we have here this on the left hand side is the metal surface where all the 

electrons have an energy less than or equal to E F 0. It has a certain work function, so 

that it can tunnel it through, so that classically it cannot go to the other side of the barrier. 

There is an electric field that is applied above the surface, because of which the potential 

energy function is a linear function of x. 

In this linear potential energy variation, is due to the presence of the electric field. So, we 

can use the JWKB formula for the electron, which is near the Fermi level, which is the 

probability of it to tunnel through. Why do I say near Fermi level is because deep inside 

here the probability will become extremely small and it will contribute very little to the 

current, to the to the field emission current. So, this phenomenon is known as a Cold 

Emission or Field Emission of electrons from a cooled metal surface. 

And if you therefore, apply an electric field to a cold metal, some electrons do come out 

that is because of the tunneling of the electrons from the barrier, and what we have tried 

to do is use the JWKB expression for the tunneling probability to calculate this. This can 

also model the alpha particle tunneling that we will be discussing next. So, let me now 

come to the alpha particle tunneling. 



(Refer Slide Time: 20:36) 

 

In example 3, tunneling of alpha, this is known as the alpha decay problem, and this 

theory was given Gamow and Gurney, in early 30s, I think around 1935 and so the alpha 

particle inside some of the heavy nuclei is inside a deep potential well. When it goes out 

of the, if it goes out of the nucleus then, as you know alpha particle is essentially the 

nucleus of helium particle. So, it has 2 protons and 2 neutrons. So, an alpha particle is the 

nucleus of the helium atom. So, it has 2 protons and 2 neutrons, so it is positively 

charged. I have a nucleus. Let us suppose, I consider the nucleus. Let me give you an 

example like 92 uranium 238. 

Now, this is a radioactive substance. As you all know, this decays to 90 Thorium 234 

plus an alpha particle. So, alpha particle has 2 protons and 2 neutrons, and it comes out 

with energy of about 4.2 m E V. So, this energy is 4.2 m E V and as soon as it gets out it 

experiences a repulsive force; it experiences a repulsive force. 

So, the potential energy function is positive, so what is the potential energy function? V 

of r, we will write down as small z which is 2, because the charge of the alpha particle is 

z times q, 2 times q where q is the magnitude of the charged electron or of the proton. So 

z q is the charge of the alpha particle. Let us suppose z q is the charge of the nucleus, 

daughter nucleus. So, in this case capital Z is 90, not 92, multiplied by q square by 4 pi 

epsilon, I am working in the M.K.S system of units. 

This is the repulsive potential energy function that it sees.  



(Refer Slide Time: 23:49) 

 

So, in the alpha decay problem, we will have V of r is equal to minus V 0 for 0 less than 

r less than a, and is equal to z Z q square, this small z is 2. Sorry, here I wrote q square 

twice, so this should not be there (Refer Slide Time: 24:24), 4 pi epsilon naught r. So, 

this is for r greater than a. Now, this is the potential energy that is experienced by the 

alpha particle. Let the alpha particle mass, I denote it by mu. So, as you all know that we 

have worked with the Schrodinger equation and the radial part of the Schrödinger 

equation was 1 over r square d by d r of r square d R by d r plus 2 mu by h cross square E 

minus V of r minus l into l plus 1 h cross square by 2 mu r square, R of r is equal to 0. 

I assume l to be 0; zero angular momentum, and then as we have done before, I define a 

function small u of r through this relation, R of r is equal to u of r by r, and I do not have 

to, let me do the algebra. Therefore, d R by d r is equal to u prime by r minus u by r 

square. I can multiply this by r square, so this is r square, multiply this by r square. So, 

this becomes r u prime minus u, so this is straight forward. I think I had done this once 

before.  



(Refer Slide Time: 26:40) 

 

I can differentiate this, so d by d r of r square d R by d r. So, this will become r u double 

prime d 2 u by d r square plus u prime and differential of this is minus u prime, so these 

2 term cancel out. 

If I divide by r square, as you can see here, so I get 1 over r square divided by r square, 

so this becomes 1 over r d 2 u by d r square. So, this quantity becomes 1 over r d 2 u by d 

r square plus 2 mu by h cross square E minus V of r, R of r and it is u of r by r. So, why I 

am doing all this? I am trying to tell you that u of r, so r and r cancels out, so d u by d r 

square plus 2 mu by h cross square, E minus V of r, u of r is equal to 0. 

This is once again the one dimensional Schrodinger equation but the only thing that we 

have to remember is that r does not take negative values, r goes from 0 to infinity and not 

minus infinity to plus infinity, r goes from 0 to infinity and that is all of you must 

remember. So, that now we can use the same formula for the alpha decay problem. 

You have the energy, one of the turning points is R (Refer Slide Time: 28:41) and the 

other turning point is b, so where b is the value of r, where this coulomb potential 

becomes equal to E. I hope it is clear so, therefore, this thing is T; the tunneling 

probability is exponential minus 2 G and let me write down the formula for G. 
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The formula for G is equal to, one of the turning point is 0, the other turning point is b, 

under root of 2 mu by h cross square, multiplied by V of r minus E, raise to the power of 

half d r. What is V of r? That is small z capital Z q square by 4 pi epsilon naught r minus 

E. 

What I do is, I take this part outside, the square root of this part (Refer Slide Time: 

30:32), this part outside. So, I will write down, this is equal to under root of 2 mu, just to 

patiently, in all quantum mechanical calculations, you just have to be patient, and this is 

4 pi, epsilon naught, h cross square, 0 to b, 1 over r, minus 1 over b, raise to the power of 

half d r. 

You see, because b is the point where this is 0, so z Z q square 4 pi epsilon naught b, is 

equal to E (Refer Slide Time: 31:32). So, this is the turning point, b is therefore, is equal 

to z Z q square by 4 pi epsilon naught E; E is the energy of the alpha particle. Now, let 

me integrate this and then we will come back to this, so we write down r is equal to, let 

me do this although it is a very simple integration, r is equal to b cos square theta. So, 

this becomes, I just consider the integral. So d r becomes 2 b cos theta sine theta d theta 

with a negative sign, so when r is 0 theta becomes pi, no i’m sorry i’m sorry i made a 

mistake 



(Refer Slide Time: 33:02) 

 

You see we had this potential energy function was something like this. This is the 0, this 

is r. So, this is minus V 0 and this distance is the radius of the nucleus.  

So, the lower limit is not 0 is R (Refer Slide Time: 33:29). So, the lower limit, I hope you 

understand this that where did the figure go just 1 second let me yes  

In this figure, one of the turning points is here. The particle is going from here, the alpha 

particle is incident on the boundary of the nucleus, and at that point r is equal to capital R 

and then it hits the point b, b is the other turning point. 

So, the limits are limits are not from 0 to b but, from capital R which is the radius of the 

nucleus, and the radius of the nucleus is given by R 0 A to the power of 1 by 3. This is a 

empirical formula, where R 0 is the radius and this is about 1 Fermi, 10 to the power 

minus 15 meters. A (Refer Slide Time: 34:29) is the mass number of the nucleus. So, r is 

equal to b cos square theta and since there is a minus sign, then theta will be cos inverse 

under root of R by b when r is equal to R, and when r is equal to b, so cos square theta 

becomes 1, so theta becomes 0. Then the integrand will become 1 over b cos square theta 

minus 1 over b, raise to the power of half; d r is 2 b cos theta sin theta d theta. 

I hope it is clear. So, I take the b outside and this b to the power of half comes outside, b 

to the power of half will be…  



(Refer Slide Time: 35:56) 

 

So, this will be integral, so let me put it below, and we will have under root of b and this 

will be integral from 0 to cos inverse under root of R by b. I had taken b outside. 

So, 1 minus cos square theta divided by cos square theta, raise to the power of half, times 

2 cos theta sine theta d theta. So, this is sine theta and this is cos theta, so this cos theta 

this cos theta cancels out. This becomes 2 sine square theta and 2 sin square theta is 1 

minus cos 2 theta. Now, the integration is very simple. 

The final result becomes, G becomes equal to 2 mu z Z q square, and b comes inside 

because of this factor divided by 4 pi epsilon h cross square under the root. This becomes 

equal to cos inverse under root of R by b minus under root of R by b minus R by b whole 

square. In fact, if approximation, so this can be written as pi by 2, when R is very small 

compared to b then minus 2 under root of R by b. 

This is a fair approximation that R by b is much less than 1, is a about 0.1 usually, is 

usually a 0.1, so in that approximation this is the value. Now, therefore, an analytical 

expression for G and the tunneling probability is exponential as we all know minus 2 G. 

Now, let me consider, so we have now an analytical expression for the tunneling 

probability. From this we will calculate the lifetime of the alpha particles, and we will 

get the result, which can be compared with experimental data and that is what we will do 

now. 



You see inside the nucleus, let us suppose we have N such nuclei. So, we take what is 

known as a semi classical model in which the alpha particle is moving with a velocity V 

each, and it hits the boundary, and at each hitting there is a certain probability that it will 

tunnel to the other side. This tunneling probability, we have calculated by using the 

WKB formula. 

(Refer Slide Time: 39:43) 

 

So the number of particles, which have number of alpha particles that have come out is 

the is proportional to the number of original nuclei or number of alpha particles, 

multiplied by the number of times the alpha particle hits the barrier. That will be about V 

by R times d t in time T. So, number of times the alpha particle hits the spherical surface 

of the nucleus per second is V by R, so in time d T it is so much. 

And each time, the probability that it tunnels through is so much. So, you have d N by N 

is equal to minus lambda times d t, where lambda is the inverse of the mean free time; 

mean life time. So, this will give me N is equal to N 0 E to the power of minus t by tau, 

where tau is equal to 1 over lambda. This is the radioactive decay law and that is 

approximately equal to V by r, sorry sorry 1 over tau is equal to lambda and 1 over tau is 

equal to V by R into T (Refer Slide Time: 41:12).  

So, once again, let us suppose, I exaggerate the nucleus like this; this is the nucleus 

whose radius is R, so approximately the alpha particle is assumed to be free and it is 

moving like in a straight line, in a semi classical model. So, number of times the alpha 



particle hits the surface trying to go out of the surface is V by R in times d t, the number 

of hits is V by r d t multiplied by the total number of nuclei that are present, and at each 

hit, there is a T probability of it getting tunnel through, tunneling outside. Therefore, the 

number of decays that take place and let us suppose that it is denoted by d N and because 

N decreases therefore, there is a minus sign. 

So, minus N times V by R d t times T, if I write lambda is equal to so much then tau will 

become 1 over lambda or lambda is equal to 1 over tau is equal to V by R times T.  

(Refer Slide Time: 42:33) 

 

We have now an analytical expression for the lifetime, so for the mean life time is equal 

to, are given by 1 over tau, equal to V by R into the lifetime that is exponential minus 2 

G. So, G as we all know is equal to under root of 2 mu z Z q square b, by 4 pi epsilon 

naught h cross square, approximately pi by 2 minus 2 under root of R by b. Now, one can 

do a little bit of algebra. Let me tell you a simple thing that b is equal to z Z q square by 

4 pi epsilon naught E. As you know the fine structure constant is q square by 4 pi epsilon 

h cross c.  

So, q square by 4 pi epsilon naught is alpha times h cross c. So, this I write as z Z alpha h 

cross c divided by E and what we do is I multiply this by m p c square and divide by m p 

c square divided by E. I tell you the moment why I did this, where m p is the mass of the 

proton, we know that m p c square; the rest mass of the proton is about 938 MeV. So, 



once it goes out from here, therefore, if I put m p c square is equal to 938 and then alpha 

is equal to as we know is equal to 1 over 137. 

 (Refer Slide Time: 45:10) 

 

And then we use consistently, this M.K.S system of units, so in the M.K.S system of 

units m p is equal to 1.67 into 10 to the power of minus 27 kg, and h cross is equal to as 

you know 1.05 into 10 to the power of minus 34 joules second. I substitute for small z, Z 

remains like that and E is measured now in MeV. 

Alpha is 1 over 137, h cross I know, m p I know and c is about 3 into 10 to the power of 

8 meters per second. So, if I substitute that then in this expression, I get this following 

expression that b is equal to 2.87 into 10 to the power of minus 15 Z by E. This is 

measured in meters where E is measured in MeV. So, I would like you to fill out the 

intermediate steps. 

And then the formula that we will be using for R is equal to, as I told you that this is 

equal to R 0 A to the power of 1 by 3. Then R 0 is approximately equal to 1.07 into 10 to 

the power of minus 15 meters.  
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If you now use this and substitute it, in this expression, and also remember that the 

velocity of the alpha particle is related to the energy, by so much such as half mu V 

square is equal to E, and then you transform this also, where mu is the mass of the alpha 

particle, and what you do is you divide this by m p c square and multiply this by m p c 

square and so you get this part is E divided by 938 MeV and then m p c square, m p is 

the mass in kilogram, c is so much and then you obtain the mass of the alpha particle is 4 

times mu p. Using that we can obtain an expression for V, and everywhere the energy of 

the alpha particle. 

 (Refer Slide Time: 48:01) 

 



Let me do this again how to write the expression for V. So, you have half mu V square is 

E, the energy of the alpha particle. So, I divide by m p c square and multiply by m p c 

square. So, this is 938 m e V, so E by 938 m e V. Now, E is measured in MeV. So, V 

square is equal to m p c square, divided 2 m p multiplied by mu; mu is the mass of the 

alpha particle and approximately this is 4 times mass of the proton. 

So, you have here, therefore, these 2 cancels out with 2 and m p, m p cancels out. V is 

equal to under the root of E and then this will be under the root of 2 into 938 multiplied 

by 3 into 10 to the power of 8. Now, V is measured in meters per second, but, E is 

written in terms of MeV. So, E has to be measured in m e v, because we have used m p c 

square. 
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If you use this kind of algebra then the final formula, it is given in our book by myself 

and Professor Lokanathan on quantum mechanics theory and applications, fifth edition. 

So, you will get this expression for 1 over tau. So, here I read it out that 1 over tau is 

equal to 6.47 into 10 to the power of 21 square root of E; E is measured in MeV, A is the 

mass number of nucleus minus 1 by 3 exponential so much. 

If you take the log to the base of 10, then you will get this approximate expression of 

minus 21. 8 minus half log 10, where tau is measured in seconds, and E is measured in 

MeV. So, E is the energy in MeV of the alpha particle coming out of the nucleus, A is 



the atomic number of the nucleus. Z is the atomic number the charge of the daughter 

nucleus; A, and all symbols are defined. 

(Refer Slide Time: 51:02) 

 

Let me now consider two simple examples. One is let me consider the decay of 84 

polonium 12, example 1, going over to 82 lead 208, and an alpha particle of 8.9 MeV is 

emitted. So, you have here in energy E is equal to 8.9 MeV, million electron volts. 

This Z is the 82 and A is 208. So, then what I do is that I substitute here E is equal to 8.9, 

and A is equal to 208, Z is equal to 82 and carry out this calculation. We will find that 

this comes out to be log tau to the base 10, it is a simple calculation comes out to be 

about minus four. 

So this means, tau is about 10 to the power of minus 4 seconds. So, from first principles 

see the tremendous beauty of quantum mechanics, from first principles, we have been 

able to calculate without making any assumptions, the approximate lifetime of the alpha 

particle coming out of the nucleus.  
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Let me take another example, and the example 2 is 92 uranium 238, giving you the 90 

thorium 234 plus an alpha particle of 4.2 MeV, and here the Z is equal to 90, A is equal 

to 234 and E is equal to 4.2 MeV. Now, I once again substitute these numerical values in 

this equation and what I find is that tau comes out to be log tau now comes out to be 23. 

There log tau had come out to be minus 4, so tau comes out to be 10 to the power of 23 

seconds. 

You must all should know that 1 year is about 3 into 10 to the power of 7 seconds, the 

best way to remember that is 1 year is about pi times 10 to the power of 7 seconds, so 

this is 10 to the power of 16 years, so, this is a log tau comes out to be 10 to the power of 

23 and we have this about a billion years, that is the lifetime that comes out. So, this is 

the value that comes out. Now, unfortunately the experimental value is 10 to the power 

of minus 7 seconds (Refer Slide Time: 55:18). 

In this particular case, and here it is about 10 to the power of 17 seconds (Refer Slide 

Time: 55:28). So, one may say that the experiment really does not compare too well to 

the theory. But, our theory is very approximate; we have assumed that the alpha particle 

was moving classically, as a free particle inside the nucleus. This is not quite correct. But 

see that from the variation from 10 to the, that it has such a low value from 10 to the 

power of minus 4 seconds to 10 to the power of 23 seconds. 



The experimental value is 10 to the power of minus 7 seconds to 10 to the power of 17 

seconds, where 10 to the power of minus 7 seconds is less than a micro second, a tenth of 

a micro second, that is the lifetime of the alpha particle, measured lifetime of the alpha 

particle, and 10 to the power of 17 seconds is about 10 to the power of 10 years that is it 

is about a billion years. 

And this huge range is explained and I had a slide, I am getting mixed up with all my 

slides.  
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This is the experimental variation of the lifetime that tau is measured in years, the 

vertical scale. This is also given in my book that tau is measured in years and it goes 

from log tau is from minus 10 to plus 10, something like a fraction of a second to billions 

of years. 

And this is what our approximate theory predicts, although it is off by a factor, but this 

huge variation in the lifetime from a few micro seconds to a billion years that is 

predicted by the WKB approximation. So, undoubtedly the JWKB approximation is a 

very crude model, a very approximate model that it does reflect the qualitative behavior 

that is experimentally observed the lifetime of the alpha (( )) alpha meter problems, 

varies from a micro second to millions of years. That kind of variation is also predicted 

by WKB theory. 



However, it does give a slightly inaccurate result because of the fact that we have 

assumed the alpha particle to be free inside the nucleus and WKB formula itself, is not 

rigorously correct; is an approximate formula. Having said that we in the next lecture 

what we will do is we will start with a new another approximate method, mainly the 

Perturbation theory, but before that what we will do is that we will justify the connection 

formula that we have used in our WKB approximation.  

Thank You. 

. 
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