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We continue with our discussions on nonlinear optics. Do you have any questions from the 

last class. 

Sir, how is it possible that the electromagnetic wave of frequency omega naught, they are 

making dipoles to produce frequency of 2 omega? 
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How is it that electronic magnetic wave at frequency omega is creating dipoles, which are 

radiating at 2 omega frequency? This is coming through the equation, which represent the 

nonlinear polarization term. So, if you go back and look at this equation, if this term is 

absent, then the polarization has the same frequency as the electric field of the incident light 

wave. So, polarization represents dipoles; so, if you have a linear medium, if the 



electromagnetic wave had frequency omega, the polarization also have frequency omega. So, 

the dipoles will oscillate at frequency omega and radiate omega frequency. 

Now, because of this term - E square, if E has a frequency - omega, E square - there is a term 

at frequency 2 omega, so that means there is a component of polarization oscillating at 

frequency 2 omega also, apart from omega from here. So, that 2 omega frequency represents 

a component of the nonlinear polarization and polarization is dipoles. So essentially, the 

polarization at 2 omega frequency is generating electromagnetic wave at frequency 2 omega. 

So, the presence of this term induces nonlinear polarization. And if E has a frequency omega, 

this E square term will contribute a frequency 2 omega to P. 

So, the polarization not only has a frequency omega, but also has a frequency 2 omega; that 

means, it has a combination; it is not simple harmonic any more, it has omega, it has a d c 

term, and also a 2 omega term. So, that 2 omega contribution to the polarization leads to the 

generation of electromagnetic wave with that frequency 2 omega; that means, there are 

individual dipoles radiating at 2 omega frequency, but please remember that even if I have a 

large number of dipoles radiating electromagnetic waves at a certain frequency, it is not 

necessary that they will all constructively interfere and add. 

It is possible that they cancel each other off. So, there is no way and that is the phase 

matching condition, that I will explain; that if you do not satisfy the phase matching 

condition, what is happening is, the radiation from individual dipoles is not adding 

constructively; it is trying to sort of cancel off - partly cancel off or completely cancel off.  

Does that answer your question? Anything else? 
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So, we will continue the discussion on second harmonic generation. Let me recall the 

problem we are looking at is, I have a crystal with a finite second order nonlinear coefficient, 

I launch waves at frequency omega, and I want to calculate what is the amplitude of 

electromagnetic wave at frequency 2 omega, as it gets generated along the crystal; so, this is 

the z direction. Now, let me recall this z direction is some laboratory coordinate z direction, 

this could represent optic axis, this could be at some angle to the optic axis; and this z 

direction is not the principle z direction of the crystal. 

So, let me recall, so we had E omega given by half of E 1 of z e to the power i k 1 z minus 

omega t plus complex conjugate. Then, we wrote E 2 omega as half E 2 of z e to the power i 

k 2 z minus 2 omega t plus complex conjugate. 

A plane wave at frequency omega propagating in the z direction. And inside the crystal, at 

any point you also have electromagnetic wave at frequency 2 omega, which we expect we 

generated by the nonlinear polarization at frequency 2 omega. So, what we did was, we 

substituted this equation into the nonlinear polarization term, calculated the nonlinear 

polarization at frequency 2 omega and at omega, substituted in the wave equation 

corresponding to 2 omega. Let us recall this equation was, E of 2 omega minus mu 0 epsilon 

of 2 omega del square E of 2 omega by del t square is equal to mu naught del square P 

nonlinear at 2 omega by del t square. 



So, we substitute at expressions for E 2 omega and P nonlinear at 2 omega into this equation, 

neglected the second derivative of E 2 with respective to z, and use the fact that k 2 square is 

4 omega square mu naught epsilon at 2 omega. 

And after some simplification, remember we obtained this equation, d E 2 by dz is equal to i 

times omega d by c n 2 E 1 square e to the power minus i delta k z; this represents a 

differential equation corresponding to the rate of change of the amplitude - complex 

amplitude was second harmonic wave - as it propagates on to z direction. Remember, d is the 

nonlinear coefficient.  

We will have more detail discussions on the tensile properties of d, but right now this d is 

some scalar quantity, setting here in effective nonlinear coefficient. And the fact that E 2 is 

proportional to E 1 square is because of nonlinearity; E 1 square is coming in this equation 

starts a nonlinear equation. And as I mentioned this equation cannot be solved just like this, 

because E 1 is also a function of z. So, if second harmonic waves get generated, the energy 

must be coming from the fundamental omega and so if E 2 increases with z, E 1 must 

decrease with z. 

Now, as I told you in most situations, the efficiency of generating 2 omega from omega is 

usually very low - may be a percent or few percent. And in such a situation, I can 

approximately assume that, E 1 is independent of z and then I can integrate this equation. 
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Now, before we integrate this, let me write down the equation for E 1 as a function of z. And 

I leave it as a problem you to obtain this equation exactly in the same procedure, that we 

adopted to obtain this equation. So, d E 1 by dz is i omega d by c n 1. Now, tell me, instead 

of E 1 square, what should I get? Last time, I told you that E 1 square, E 1 is a coefficient of 

exponential minus i omega t, so E 1 square will be minus 2 i omega t, which is E 2. 

So, how will I get omega?  Nonlinearity at omega will depend on what product? E 2 into E 1 

star; E 2 corresponds to E to the power minus 2 i omega t, E 1 corresponds to exponential 

plus i omega t and the product will be the coefficient of E to the power minus i omega t, 

which is what E 1 represents. In fact, this E 2 E 1 star we had obtained as the nonlinear 

polarization term of that the frequency omega.  

If you look back, we had shown that P nonlinear at omega is half of 2 epsilon 0 d E 2 E 1 star 

into exponential i k 2 minus k 1 z minus omega t plus complex conjugate; so, this equation 

we have derived. So, you can show that this equation, you get with exponential i delta k times 

z. So, these are the two coupled nonlinear differential equations, which describe the evolution 

of the fundamental and the second harmonic as a function of z. 

So, I leave this derivation of the second equation to you. you use the same procedure, neglect 

d 2 E 1 by dz square, use an expression relating k 1 and epsilon at omega, and you will end 

up with this equation. 

So, normally, we have to solve these two equations simultaneously to obtain the solution, but 

first what you will do is, we will look at the approximation, that the generation of second 

harmonic is very weak; efficiency is very low. 

So, as I told you, suppose I launch 1 of watt power at omega and if I generate 1 milliwatt of 

power at 2 omega, I shall have 999 milliwatts at omega frequency. So, the electric field of 1 

watt and 999 milliwatts is almost equal; they are not very different. So, I can assume E 1 does 

not change appreciably as I propagate, while E 2 has gone from 0 to 1 milliwatt. So, change 

in E 2 is significant, but the change in E 1 could be very small. So, this is under low 

efficiencies; for high efficiencies, I must solve these two equations simultaneously. 
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So, we look at the solution later, but right now let me look at the solution of the first equation 

under low efficiencies. So, let me rewrite this equation, d E 2 by dz is i omega d by c n 2 E 1 

square exponential minus i delta k z 

Now, if E 1 is a constant, I can integrate this equation; so, integral d E 2 from 0 to z will be 

equal to i omega d by c n 2, E 1 square is a constant, integral 0 to z minus i delta k z dz. 

Remember, delta k is k 2 minus 2 k 1. So, this will give me E 2 of z minus E 2 of 0 is equal to 

i omega d by c n 2 E 1 square exponential minus i delta k z minus 1 by minus i delta k. 

Now, in most situations, there is no incident field at omega frequency. In fact, normally, in 

second harmonic generation, I have omega frequency instance. So, E 2 of 0 is 0, because that 

is the input field at second harmonic; so, I can write this as, E 2 of z is i omega d by c n 2 E 1 

square, and let me take this factor common, minus i delta k z by 2. So, what will be left in the 

numerator? I will have minus i delta k z by 2 minus e to the power i delta k z by 2 by minus i 

delta k. 

So, omega d by c n 2 E 1 square exponential minus i delta k z by 2, this is minus 2 i sign 

delta k z by 2, so minus i minus i cancels off, and I get 2 sin delta k z by 2 by delta k. So, this 

is the electromagnetic field at the second harmonic; remember E 2 is the amplitude - complex 

amplitude of the electric field - corresponding to the frequency 2 omega; E 1 is assumed to be 

constant and is the electric field of the incident wave at frequency omega. 
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Now, what I am in interested in is, what is the power generated in the second harmonic, how 

much of energy is generated in the second harmonic. So, how do I calculate the power? I 

know that power is related to electric field through this equation. So, power at second 

harmonic is n 2 by 2 c mu 0 mod E 2 square into area of the beam. 

So, if the beam has an area a, I am not taking any diffraction into account, there is area of 

cross section S; in that S area of cross section, this is the intensity; remember, intensity is 

related to electric field of a plane wave through this equation, the refractive index divided by 

2 c mu 0 mod E 2 of z square into area; that is the power at the second harmonic. Similarly, I 

can define power at the fundamental as, n 1 by 2 c mu 0 mod E 1 square into S; E 1 is 

assumed to be a constant - almost a constant, so P 1 is the power incident at the fundamental 

frequency omega. 

I have an expression for E 2 of z, so I substitute from here. So, let me do this mathematics 

here; so, P 2 of z is n 2 by 2 c mu 0; now, mod E 2 z square will give me omega square d 

square by c square n 2 square into mod E 1 raise power 4 into sin squared delta k z by 2 by 

delta k by 2 whole square. 

I have substituted E 2 of z, that we have obtained as a solution into this equation. Now, I can 

replace mod E 1 raise power 4 in terms of P 1. So, this is n 2 by 2 c mu 0 omega square d 

square by c square n 2 square. Now, mod E 1 4 is 4 c square mu 0 square P 1 square by n 1 



square into S square sorry there is an S here, into S, this is into S area into S into sin square 

delta k z by 2 by delta k by 2 whole square, simple algebra. 

So, let me strike off common terms here, one n 2 goes off here, c square goes off, 1 mu 0 

goes off, see you will have mu 0; so there is factor of 2, this factor of 2 cuts off here, so 2 mu 

0 omega square by c n 1 square n 2 d square P 1 square by S, one of the S cancels off, into sin 

square delta k z by 2 by delta k by 2 whole square. P 2 of z is the power in the second 

harmonic wave at any value of z; P 1 is the power incident at the fundamental frequency 

omega and that is assumed to remain constant with propagation; d is the nonlinear co-

efficient; S is the area of cross section of the beam; and delta k is k 2 minus 2 k mod. The 

first thing you notice is, when will, under what conditions of delta k will P 2 be maximum. 
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When delta k is equal to 0, what happens to this function - sin square delta k z by 2 by delta k 

by 2 whole square one or something else? z square; sin x by x is 1, but this is sin alpha x by x 

whole square; so, please remember, this is z. So, actually the maximum efficiency will 

happen. For maximum efficiency, for maximum P 2 of z, delta k is equal to 0, this implies k 2 

is equal to 2k 1. And because k 2 is 2 omega by c into n 2 must be 2 times omega by c into n 

1 this implies n 2 is equal to n 1; this is called the Phase Matching Condition. 

So, maximum conversion will take place, if you satisfy the phase matching condition. And as 

I interpreted before, this implies that the velocity of the nonlinear polarization at frequency 2 

omega is equal to the velocity of electromagnetic wave at frequency 2 omega. 



Nonlinear polarization is the source of the electromagnetic wave. If the source and the wave 

that it generates travel at the same speed, then you can continue to add energy into the second 

harmonic. So, when you satisfy the phase matching condition, you find that the efficiency is 

maximum, the generation of second harmonic is maximum. And this is nothing but saying 

that the nonlinear polarization and the velocity and the wave that it is trying to generate the 

travel at the same speed. 

This you will see in many other interactions as we go through and this is a very very 

important condition for efficient nonlinear interaction. We will actually calculate the power 

generated if I do not satisfy this condition and you will see the efficiency is to be million 

times smaller than if you were to satisfy the condition. So, the efficiency very critically 

depends on your satisfying the phase matching condition. 

So, if I satisfy the phase matching condition, then P 2 of z will be given by 2 mu 0 omega 

square by c n 1 square n 2 d square P 1 square by S into z square; the sin square delta k z by 2 

by delta k by 2 whole square is simply z square. So, this is the maximum efficiency and the 

efficiency grows as z square. If you double the length of the crystal, the efficiency becomes 4 

times. 

Please note that I cannot use this equation, if the efficiency becomes very large, because 

according to this equation, it looks as if I keep on increasing z and my efficiency can be 

larger and larger more than 100 percent; that is not correct, because this equation is valid only 

for low conversion efficiencies. The moment P 2 and P 1 become comparable, I have to use 

the second equation also simultaneously to solve. 
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Now, with this equation, from this equation actually, we can define what is called as the 

efficiency of second harmonic generation, as the ratio of the power emit coming out at 

second harmonic divided the power incident at the frequency omega. 
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The power that is generated at frequency 2 omega divided by the power incident at omega is 

the efficiency is, P 2 of z by P 1 and this is nothing but 2 mu 0 omega square by c n 1 square 

n 2 d square P 1 by S sin delta k z by 2 by delta k by 2 whole square. 
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Consider both the equation simultaneously, after the efficiency is sufficiently high, we expect 

a saturation or do we expect that it will fall again?  

No, I will solve these two equations later. And we will solve this, assuming delta k is equal to 

0 and I will show you it saturates to 100 percent, as you keep on increasing the length; it will 

never reach 100 percent, unless you have an infinite length of meter large. So, the energy 

keeps on adding up, adding up, and finally… 

But if delta k is not 0 as we now show that, this is a periodic exchange, I will plot that. So, 

first thing to notice here is the efficiency; this is the equation for the efficiency of the 

generation of second harmonic through the nonlinear interaction process; and first notice that 

the efficiency depends on the ratio of P 1 by S. 

Sir, if we say that, if we consider high efficiency generation. 

Yes. 

Then, do we not have to consider the second derivative that indicated in the(()) 

No, second derivative neglect implies that the rate of change of E 1 and E 2 is small; it does 

not mean the total E 1 and E 2 are small. The rate at which E 1 is changing, because if you go 

back to that equation and see what we are neglecting with respect to what, then you will see 



that, it only means that the rate at which E 1 and E 2 are changing with z, over a wave length 

is very very small; that is, the change in E 1 and E 2 over a wave length is very small. 

So, this dependent on P 1 by S is a typical nonlinear interaction, because efficiency depends 

on the input power. Normally, in linear processes, deficiency does not depend on the input 

amplitudes; this is a nonlinear process. So, if you take a certain power of light and if you 

decrease the area of cross section, the efficiency will increase for the same power.  

So, if you focus a laser beam into a crystal to decrease the area of cross section, you will 

increase the efficiency. Of course, as I told you before while discussing the fraction, we have 

to be conscious that if I try to focus too much, I will defocus very quickly. So, I cannot have 

arbitrary z, if I try to focus too much. 

So, the length over which I can interact over a small area of cross section are not independent 

of each other, but the fact that for the same power, I can increase efficiency by decreasing the 

area of cross section is interesting. And that is, which means that, I need to reduce the area of 

cross section of the beam, if I want more efficiency. It depends on d square - the square of the 

nonlinear coefficient and so the larger the nonlinear coefficient of the crystal, the higher 

deficiency. So, there is a constant effort to make, to look for materials with higher and higher 

values of nonlinear coefficients. 

So, lithium niobate is one of the very high nonlinear coefficient crystal; and d, you can get of 

the order of 30 10 to the minus 12 meters per volt. So, the order of magnitude of d is above 

101 to the minus 12 meters per volt and lithium niobate is one of the crystals which has one 

very strong nonlinear optical coefficient. 

So, let me plot eta verses z; if I do phase matching, that means if delta k is equal to 0, this 

coefficient becomes z square. So, this increases quadratically with z; I am assuming this 

numbers are still a few percent only, otherwise this parabola will go on, keeping on going up. 

So, the actual efficiency if I were to calculate, we will be going along this, but then start to 

deviate from here for larger deficiencies. 

What happens if delta k is not equal to 0? Its periodic; so, it goes up, come down. Now, what 

is this value? This is z is equal to 0. What is the value at which deficiency becomes 0 again? 

When the sin function becomes 0, so this length must be 2 phi by delta k, this is 4 phi by 

delta k, and this point is phi by delta. 
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So, if you do not have phase matching, the power in the second harmonic increases up to a 

length phi by delta k becomes maximum at this distance and then starts to decreasing again. 

This length is called the Coherence Length, L c is equal to phi by delta k. This is not the 

Coherence Length of a light source having a spectral with delta lambda, this is another 

Coherence Length; that means, if you, if you have a finite delta k, the maximum efficiency 

you can get is, when you take a crystal of length - Coherence Length equal to Coherence 

Length - you cannot do anything better than that. If you have phase matching, the longer the 

crystal, the better it is; but if you do not have phase matching, then the best you can do is to 

have a crystal of length phi by delta k - Coherence Length. 

So, now, what is happening? Let me try to interpret this figure as, so this is the plane at which 

the… so this is the crystal is here. So, the frequency omega enters from here; at the input, 

there is no second harmonic field. So, the omega field generates nonlinear polarization at 2 

omega and omega also inside; the 2 omega field starts to build up. At this distance, it keeps 

on building up until the distance phi by delta k; beyond phi by delta k, the amplitude of two 

of second harmonic is decreasing. Now, so, what is happening? Where is this power going? It 

must be going back to omega frequency. 

So, what is this process? Difference frequency generation. So, till this point, omega plus 

omega equal to 2 omega - second harmonic; beyond this point, 2 omega minus omega is 

equal to omega till this point, till the second harmonic disappears. This plane is exactly same 



as this plane; again, the second harmonic starts to grow. So, this keeps on repeating itself 

periodically and this periodic exchange is from omega to omega, and back to omega and then 

to omega, back to omega; it keeps on exchanging back and forth. And the maximum 

efficiency you can get here is, when you have, what is the value of this? When this function 

becomes… 

No, it cannot be 1. 

When sin becomes 1; so, this coefficient becomes… So, this maximum efficiency is this, 

entire quantity multiplied by 4 by delta k square. When this sin becomes 1, so that is the 

value; so, this is, the maximum efficiency you can get is, this multiplied by 4 by delta k 

square. 

So, larger the delta k, smaller is the maximum value. So, the more you are phase mismatched, 

the smaller is the maximum efficiency you can generate from this process. So, why is it at 

this point, the energy is flowing back from 2 omega to omega? So, let me calculate what is 

the phase shift suffered by the nonlinear polarization in travelling from here to this point, and 

what is the phase shift suffered by the second harmonic electromagnetic field in going from 

here to here. 
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Now, if you remember, if you recall the nonlinear polarization wave is also a wave, so the 

nonlinear polarization; if you remember this is nonlinear polarization, 2 omega is half of 



epsilon 0 d E 1 square e to the power 2i k 1 z minus omega t plus complex conjugate; and the 

electromagnetic wave at 2 omega is half E 2 e to the power i times k 2 z minus 2 omega t 

plus complex conjugate. 

The nonlinear polarization is a travelling wave; the electromagnetic wave at omega 2 omega 

is also a travelling wave. So, what is the phase difference - phase shift suffered by the 

nonlinear polarization in travelling a distance z? 2 k 1 z, because the phase is changing at the 

rate of 2 i k 1 z. So, if I propagate at distance z, the phase will change by 2 k 1 z. 

What about the electromagnetic wave? k 2 z and they may not be equal; they are not equal if 

you phase matched. And so the phase difference between the polarization and the 

electromagnetic wave is, phi electromagnetic minus phi polarization, which is k 2 minus 2 k 

1 into z, which is delta k z. 

So, if you are not phase matched, the nonlinear polarization and the electromagnetic wave are 

actually getting dephased as you propagate. And what happen at the Coherence Length? z is 

phi by delta k; the phase difference becomes phi - there exactly out of phase. 
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So, the second harmonic is travelling at a different speed as the nonlinear polarization, at a 

distance correspondent to Coherence Length. The field and the polarization get out of phase 

by phi and beyond that point, the polarization instead of feeding energy into the second 

harmonic, constructively adding; it is actually feeding, but out of phase and out of phase 



means destructive interference. And so, the amplitude of the second harmonic starts to fall, 

until you reach completely 0; at this point, there is no second harmonic and the second 

harmonic starts to build up again. 

Remember, if you are, if you are, let me take the example of a swing, child sitting on a swing 

and the child has to sit and stand at a certain frequency. What is the frequency at which the 

child has to sit and stand? If the frequency of the swing is omega - 2 omega, right; it has to 

sit, then stand up, then sit and then stand up. So, the child sits and stands at twice the 

frequency of the pendulum of the swing. 

And if the child is not at the right frequency - a slightly different frequency, initially the 

swing will increase amplitude and then start to decrease amplitude, because the child now 

starts to sits and stand at the wrong points. So, the swing will start like this and then go back 

like this, and then again start like this, it will keep on oscillating back and forth. So, the child 

is trying to pump the swing and the maximum pumping is possible, continuous pumping is 

possible provided, the frequency at which the child is sitting and standing is lightly matched 

to the frequency at which the swing is swinging. 

If there is a small difference in frequency, it will be adding for some time, and then 

subtracting again, adding some time, subtracting; in fact, this example is a very interesting 

example. This is called a parametric amplifier, because all that the child is doing is to 

increase the length of the pendulum and decrease the length of the pendulum. It is modulating 

the time period of the pendulum by sitting and standing; and this modulation feeds energy 

into the system. This is called parametric amplifier and we have optical parametric amplifier, 

which we will discuss later. 

So, what is exactly happening is, at the Coherence Length, the electromagnetic wave and the 

polarization are exactly out of phase by phi; and beyond that point, the second harmonic 

feeds energy back into the omega frequency. So, at this point, all the energy is back in the 

omega, again 2 omega builds up and its oscillates like this periodically. 

Now, let us look at an example and calculate, suppose I didn’t bother about phase matching, 

so that will be my efficiency. So, let me calculate this number, let me assume, let we take 

some typical numbers and calculate what will be my typical efficiency. 
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So, here is an example; so, let me take a wavelength of 1.06 microns, what laser is this? 

Neodymium yttrium laser or Nd glass laser. Neodymium is used in lasers and that is creating 

a wavelength of 1.06 micron. So, this corresponds to omega. So, what is the wavelength 

corresponds to 2 omega? 0.53, that is the twice second harmonic. 

Now, let me take lithium niobate - L i N bO 3; this is a uniaxial medium. So, let me give you 

the refractive indices, n e at lambda is equal to 2.1561, n e lambda by 2 is equal to 2.2355, 

and d is equal to 30 10 to the minus 12 meter per volt. 

So, I take lithium niobate and this is the extraordinary refractive index. I also have the 

ordinary refractive indices, but I will come back to this later. This nonlinear coefficient is the 

effective coefficient, if you use the extraordinary polarization. So, this I will make it clearer 

later, but let we assume the refractive indices are given by this, this is nonlinear coefficient, 

and these are the two wavelengths.  

So, let me first calculate what is the Coherence Length. Coherence Length is L c is equal to 

phi by delta k; so, this is phi by 2 omega by c into n 2 minus n 1, which is equal to phi c by 2 

times omega times n 2 minus n 1. So, what is n 1? n eth lambda; n 2? n eth lambda by 2.  

Please remember n 1 is the refractive index seen by the wave at the fundamental frequency, 

which is the wavelength lambda, n 2 is the refractive index seen by the wave at the second 

harmonic frequency, which is n e of lambda by 2. I know the wavelengths, I can substitute 



and I get this about 3.3 micrometers - very small Coherence Length. So 3.3 micrometer, 

maximum; at 6.6 micrometer, it will become 0 again. 

 If you take a crystal of length 6.6 micrometers of this crystal and launch light, you will get 

no second harmonic. Although it has been generated inside, it has actually gone back to the 

fundamental; so, that is the Coherence Length. And now, I need to substitute into this 

equation. 
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So, I have all parameters, I have mu 0, I have omega, I know c n 1 n 2 d, so let me leave this 

terms separate, so I can substitute all this. And this is some simple numerical substitution, 

what you can show is, eta is equal to 2.3 approximately equal to into 10 to the minus 6 P 1 by 

S into sin square delta k z by 2 by delta k by 2 whole square; you can substitute the values of 

the constants and that is what you get. 

So, first let me calculate what is the maximum efficiency; I will get, so eta max, I will get 2.3 

10 to the minus 6 P 1 by S into 4 by delta k square, when the sign function becomes 1. So, let 

me assume, I have input power of 1 watt and an area of cross section corresponding to phi 

into 0.5 millimeter square. It is a crystal and the beam has a diameter of 1 millimeter and the 

power incident is 1 watt; remember, 1 watt is the lot of power at in the laser. So, you have an 

expression for delta k, you know delta k, P 1, S, everything you know; so, you can calculate 

eta max comes out to be 1.3 10 to the minus 11. 

So, you have launched 1 watt of power at the fundamental frequency and you are generating 

13 Pico watts of power, 10 to the minus 12 watts is Pico watts. So, this means essentially that 

you have a very very low efficiency and that is coming because of this term here. Suppose, I 

were to achieve phase matching, we will discuss how to achieve phase matching. Let me 

suppose I were to, I am able to make show delta k is equal to 0, then this term will give me z 

square.  

(Refer Slide Time: 42:10) 

 



And let me take a crystal of length 1 centimeter. So, suppose I could take a crystal of 1 

centimeter and I could achieve delta k is equal to 0, then the efficiency becomes eta is equal 

to 2.3 10 to the minus 6 P 1 by S into z square. And you can again calculate this number and 

you will get a value, which is 2.9 10 to the minus 4 - 1 centimeter, an increase in efficiency of 

10 million times.  

So, this means, essentially with 1 watt of power, you will generate 0.29 milliwatts of power, 

so still the efficiency is very low. At these efficiencies, the formulation is very accurate; even 

if you were to solve both equations simultaneously, your numbers will not be different from 

what you have estimated from here. So, this shows the importance of phase matching. 

If you will not take care of phase matching, the efficiencies can be very low. So, in all 

nonlinear process, you have to ensure phase matching is achieved. We will discuss some 

processes in which phase matching is automatic; that means, the nonlinear polarization and 

the wave are travelling at the same speed by definition. 

We will see this in third order processes, but you have to make sure that the polarization 

which is generating the electromagnetic wave and the electromagnetic wave are not travelling 

at different velocities, to maximize efficiency of conversion. Also note if I were to plot eta 

verses delta k for a given length, eta verses delta k will be what kind of function? It is like a 

sync function. So, eta verses delta k if I were to plot, so this is 0; what are these two 0s? This 

is delta k is equal to when will this be 0 2 phi by z 

When the sin function becomes 0, for a given z when the sin function becomes 0, other than 

delta k is equal to 0. So, you will get, so what is this imply? If you are phase matched, delta k 

is equal to 0, you have maximum conversion; if you are not phase matched, the efficiency 

drops down.  

By how much can I be of phase matching and still have reasonable efficiencies that depend 

on the width of this curve? The narrower the curve is, the more carefully I must achieve 

phase matching; if the curve is very broad, even if I have not phase matched perfectly, it does 

not matter to me. The longer the crystal length, the more critical the phase matching will 

become, because this curve will become narrower and narrower, as you increase the length of 

interaction. 
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For short crystals, shorter the crystal, the less critical is phase matching, but phase matching 

is always critical. Please remember the Coherence Length we got for 3 microns. So, 

normally, this clevia that you are given is not very large; you can be slightly… even if you 

are not perfectly phase matched, its still alright, you get some efficiency. But lower than 

when you are phase matched, by how much lower it depends on this width? 

So, what we will now do is have a quiz. So, what I will do in the next class is discuss beyond 

this point and I will let me… Before I finish, let me just give you an interpretation of this 

process itself; this second harmonic generation process is a process in which one photon at 

frequency omega and another photon at frequency omega merge to form a photon at 

frequency 2 omega. 

In a quantum mechanical picture, the second harmonic generation is a process in which a 

photon at frequency omega and a photon at frequency omega merge to form one photon at 

frequency 2 omega. 
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When this process takes place, you need to satisfy two conditions: the energy conservation 

condition, which is h cross omega plus h cross omega is equal to h cross 2 omega; and 

momentum conservation, what is the momentum conservation? It is matching condition, 

because h cross k 1 plus h cross k 1 is equal to h cross k 2; the momentum of 1 photon, so 

you have 1 photon, another photon, the sum of the momentum must be equal to momentum 

over the output photon and this is nothing but phase matching condition. 

So, phase matching condition is nothing but the velocities of the polarization and waves 

should be equal, is nothing but mathematically I get maximum conversion efficiencies, is 

nothing but saying that I am conserving momentum in this process. 
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Sir, if they are not phase matched, we saw that we had some efficiencies, it should not be 

possible. 

Question is even if I am not perfectly phase matched, there is still some conversion, how am I 

not satisfying the momentum conservation? Remember, quantum mechanically momentum 

has an uncertainty; when there is an uncertainty in momentum, you can still satisfy the 

conservation within that uncertainty. 
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So, the longer the length of the crystal, the smaller is the uncertainty in momentum and the 

narrower the phase matching curve is; so, they are all consistent. So, this is simply coming 

because of the fact, that you have uncertainty in momentum. In energy also, there could be 

uncertainties, but because the time of interaction is so large, the uncertainty in energy is 

extremely small. 

So, effectively it is coming as the energy conservation and this phase matching condition is 

nothing but momentum conservation. So, this we will, I will try to explain more classically 

right now through those equations. And later on towards the later part of the course, this will 

come out from quantum mechanical principles itself. 
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We will now have a quiz; so, what I will do is, I will write down the question here, so please 

pull out a sheet of paper and write the answer and give it to me. 

So, the question is a plane wave is propagating in a direction given by this unit vector, in 

uniaxial medium with these two refractive indices: ordinary index 2.3, extraordinary index 

2.2. 

The question is - what is the angle made be the S vector of the e- wave with z axis? Even if 

you get an expression finally without actual calculations of values is fine, but final result 

should have just numbers and inverse functions or sin functions, tan functions whatever it is, 

but you do not need to take the inverse values, but it must have the numbers final. 


