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So, we will continue with discussions on the parametric amplifier. Let me recall, we are 

looking at a following situation, where there is this non-linear crystal, you have a pump 

at omega p, you have signal at omega s and idler at omega i coming in. 

We showed earlier that, if you had only the pump and signal input, then the signal 

always gets amplified, irrespective of the phase of the signal; that is called the phase 

insensitive amplifier. If in addition to signal, I also put an idler with this frequency 

omega p becoming equal to omega s plus omega I; and we are also assuming k p is equal 

to k s plus k I, that is phase matching to be present. 

So, if I have both omega s and omega i at the input, so we have these two equations if 

you try to solve yesterday, dE s by dz is equal to i kappa s E p E i star; and dE i by dz is 

equal to i kappa i E p E s star.  

And at z is equal to 0, E s of 0 - the fields are E s 0 - and E i 0. So, E s 0 and E i 0 are 

complex fields; we will actually replace E s 0 by some amplitude and a phase. Similarly, 

the idler at the input is a complex electric field is, E i 0 exponential i phi i0; and we also 

assume before that the pump is given by E p0 exponential i phi p0. 

And, because we are assuming that there is no depletion the pump, the pump fields and a 

phase remain constant as the fields propagate. So, I have a pump coming in at a phase 

phi p0, a signal as phi s0, an idler at phi i0, the corresponding amplitudes; and E p 



supposed to be large, which means that the pump frequency omega p is a strong wave 

and so the electric field E p is independent of z. 
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So, then, we solve these two equations; so, we actually differentiate this equation, 

substitute from the second equation and got the solution. So, let me write down the 

solutions again. Solution we got was, E i of z is equal to i square root of omega i n s by 

omega s n i exponential i phi p0. And then you had, E s0 - E s0 star yesterday I had 

written - so which is E s0 exponential minus i phi s0 sin hyperbolic gz plus E i0 

exponential i phi i0 cos hyperbolic gz.  

The solution I had written yesterday was terms of this E s 0 star, E i 0, and E s 0 star and 

E i 0. So, these are the complex fields; at z is equal to 0, so I am substituting the values 

of the complex electric fields in terms of amplitude and phase.  

And similarly, E s star of z is equal to E s0 exponential minus i phi s0 cos hyperbolic gz 

minus i square root of omega s n i by omega i n s exponential minus i phi p0, and then 

you have E i0 there, so which is E i0 exponential i phi i0 sin hyperbolic gz. 

So, this is the complex electric field of the signal, at z is equal to 0 - actually the complex 

conjugate of that - and E i0 exponential i phi i0 is the complex electric field of the idler, 

at z is equal to 0. 



Now, so these are general relations, which will tell you how the signal and idler go as z 

increases. Now, I want to consider one specific case to show you the phase sensitive 

nature of the amplifier. I want to consider the case, where the number of photons of 

signal and the number of photons of idler which are incident, are equal. 
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So, that there powers are not equal, I am putting the numbers equal. So, the number of 

photons of idler and number of signal photons are equal at the input. So, what is that 

mean? Let me try to find out, what is it mean in terms of the amplitudes, E i0 and E s0. 

So, the power at the input of the signal is n s by 2 c mu 0 mod E s 0 square into area, 

which is nothing but n s by 2 c mu 0 E s 0 square into S, because E s at 0 is E s 0 

exponential i phi i phi s 0 and that is a mod square here. 

Similarly, the power in the idler is n i by 2 c mu 0 mod E i at 0 square into S, which is 

equal to n i by 2 c mu 0 E i0 square into S. so, what is the number of photons at the 

signal incident per unit time at the input? Let me call this N s0, this is P s of 0 by h cross 

omega s; P s 0 is the power of the signal at the input. So, if I divide by the energy per 

photon, I get the number of photons entering at the signal frequency per unit time, which 

is equal to n s by 2 c mu 0 1 by h cross omega s E s0 star into S. 

And what is the number of idler photons incident per unit time? P i 0 by h cross omega i, 

which is equal to n i by 2 c mu 0 1 by h cross omega i E i0 square into S. This is a 



number of photons at the signal frequency entering per unit time into a crystal; this is the 

number of photons at the idler frequency entering per unit time in the crystal (Refer Slide 

Time: 08.11). 

 And I want to consider the situation, where these two numbers are equal. What is that 

mean? This means that n s by omega s E s0 square is equal to n i by omega i E i0 square; 

you the other factors are common; 1 by 2 c mu 0 h cross and s are all common in 

between these two. So, if this condition is satisfied, then I have equal number of signal 

photons or idler photons. So, this implies that I must take an electric field amplitude at 

the idler, which is equal to omega i n s by omega s n i into E s 0. 
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So, if I take this electric field amplitude of the idler, then I have equal numbers of signal 

in idler photons and trigger crystal. So, what are these imply in my solution? Look at this 

factor, E i0 square root of omega s n i by omega i n s. So, this actually this implies that, 

let me write it the other way around, this actually implies, E s0 is equal to square root of 

omega s n i by omega i n s into E i 0. 

So, if I choose this condition, then E i 0 under root omega s n i by omega i n s becomes E 

s0. So, let me look at the signal field only, so this quantity, this square root multiplied by 

E i0 is nothing but E s0. So, this E s of star of z will be E s0 exponential minus i phi s0 



cos hyperbolic gz minus i E s0, because this E i0 multiplied by this is E s0, into at 

exponential minus i by p0 minus phi i0 sin hyperbolic gz.  

So, this remains the same; the second factor simply becomes this E i0 times square root 

of omega s n i by omega i n s becomes E s0. So, this tells me, this is E s0 exponential 

minus i phi s0 let me take out common, cos hyperbolic gz, now let me write this as, plus 

exponential minus i phi p0 minus phi i0, I have taken this factor out, so I must multiplied 

by exponential plus i phi s0; so I get minus phi s0 here. And then, this minus i 

becomes… into sin hyperbolic; this minus i is exponential minus i pi by 2 and then I 

have taken this factor out. So, I get this expression for E s star of z. 

So, now, you see here, if phi p0 minus phi s0 minus phi i0 is equal to minus pi by 2, then 

E s star of z will be E s0 exponential minus i phi s0 into exponential gz. If the phase of 

the pump signal and idler are such that, phi p0 minus phi s0 minus phi i0 is minus pi by 

2, then the signal gets amplified. 

If phi p0 minus phi s0 minus phi i0 is equal to plus pi by 2, then E s of z E s star of z is 

equal to E s0 exponential minus i phi s0 into - so this is plus pi by 2 plus pi by 2 is pi - so 

that becomes exponential minus gz. So, this is Amplification; this is Attenuation (Refer 

Slide Time: 13.34).  

So, there it is apparent that, depending on the phase between the signal and the idler, and 

the pump, either the signal gets amplified or it gets de amplified. So, as I mentioned 

before, amplification means that pump photons are down converting and generating 

signal and idler photons. 

If it is attenuation, what it implies? A signal and idler photons are combined to generate 

pump photons. Energy as to be conserved; so, I cannot increase the signal photons by, I 

can increase the number of signal photon - that amplified signal - only if I down convert 

from pump. 

So, compare to the earlier case, where there was no idler incident. In this case, the signal 

gets amplified or attenuated, depending on the phase of the signal. For a given pump and 

idler, the phase of the signal will determine whether it gets amplified or attenuated; that 



is a phase sensitive amplification and that is very interesting, because we will come back 

to this. 

In fact, we will come back to the degenerate case, where remember, in the degenerate 

case, if I had 2 omega and omega incident, it is automatically a phase sensitive amplifier. 

If I do not put omega at the input, classically there is no generation omega; but quantum 

mechanically, we will see that, even if you do not put any omega at the input, the 

moment I put 2 omega into the crystal, there will be generation of omega, because of 

what is called as spontaneous parametric down conversion.  

So, that has to be explained quantum mechanically; we will come to this little later after 

we start discussing on quantization of electromagnetic fields. But, all these explanation is 

classical and this actually takes forward into quantum mechanical also; the only problem 

is, classically I do not predict spontaneous down conversion, while that comes out in 

quantum mechanics; this amplification process is exactly the same whether it is classic or 

quantum mechanical. 

So, this we will come back to this later. In fact, as I said we will come back to the 

amplification process with the degenerate case. But before I continue with that problem, 

let me go back to these equations and find out… suppose I do not say satisfy phase 

matching condition, do I get amplification? Remember I have solve this equations and 

assuming phase matching condition. Under phase matching condition, I have shown that 

signal will get amplified, if I have only signal and pump. And I can still have 

amplification provided, I have a proper phase between idler signal and pump. 
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So, to find out whether amplification is still possible, let me go back to those equations 

without putting delta k is equal to 0. So, I have dE s by dz is equal to i kappa s E p E i 

star exponential i delta kz and dE i by dz i kappa i E p E s star exponential i delta kz. 

Sir, when the three signal idler and pumper instead, so in this case can be a studies 

management in such case. 

Sure, because for example in the KDP, I showed you that omega into omega phase 

matching is possible. So, it is also possible that, instead of omega plus omega being 2 

omega, I can also omega s plus omega i is equal to omega p; I can use the same 

birefringence, where they I had, for example, the omega wave was ordinary and the 2 

omega was extraordinary. So, here, I can have an omega p which is extraordinary, 

generating an omega s and an omega I, which are both ordinary. Remember, the omega 

was ordinary and 2 omega was extraordinary; so, the higher frequency there is 

extraordinary. 

So, omega p will be extraordinary, and omega s and omega i will be ordinary. So, it is 

possible, so I birefringence phase matching in all cases, but of course, depending on the 

frequencies and the crystals and the refractive indices. It is possible to have birefringence 

phase matching or otherwise quasi phase matching is always possible, because I can 

always have a periodic variation and get rid of the k delta k term. 



So, now, what do I do? How I solve this problem to find out whether I can get 

amplification? So, little differentiate the first equation. So, d square E s by dz square is 

equal to i kappa s E p E i star into i delta k into exponential i delta kz plus i kappa s E p 

dE i star by dz exponential i delta kz; I am not differentiate E p, because I am assuming 

low pump depletion and E p is assumed be a constant. 

So, i kappa s E p E i star exponential i delta kz is nothing but dE s by dz. So, I get first 

term is i delta k dE s by dz; and second term contains dE i star by dz - I use the second 

equation to substitute – so, I get plus i kappa s E p dE i star by dz is minus i kappa i E p 

star E s exponential minus i delta kz into exponential i delta kz. 

So, this becomes i delta k dE s by dz plus kappa s kappa i mod E p square E s; I mean 

additional term coming in the differential equation, because of delta k naught being 0. If 

I put delta k is equal to 0, I get back the original equation that we had got. Remember, 

this we are called as g square. 
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So, this is an equation - second order differential ordinary differential equation. So, I get 

d square E s by dz square minus i delta k dE s by dz minus g square E s is equal to 0. 

How do I solve this equation - ordinary second order differential equation? So, let me 

recall, so I replace the differentials by D minus i delta k D minus g square is equal to 0; 

the roots are D is equal to i delta k plus minus minus delta k square plus 4 g square by 2. 



You have studied differential equation, so you should write. So, the solution will have, E 

s of z is A, the first solution is i delta k by 2 exponential square root of g square minus 

delta k square 4 into z plus B times exponential i delta kz by 2 into exponential minus 

square root of g square minus delta k square by 4 z; it is a standard way of solving 

ordinary differential equation. 

Now, can you tell me, can it amplification, if delta k not equal to 0? What is a condition 

under which I will have amplification? This should be real. 

Sir, it should be multiplied by simplification where 2 g square in E z also there is z here 
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So, this square root should be real, then I have an exponential increasing solution. If this 

square root is imaginary, then I have an only oscillatory solution. So, the condition for 

amplification if delta k not equal to 0 is, delta k square by 4 must be less than g square. 

If delta k square by 4 is less than g square, then in this solution I have exponentially 

increasing and decreasing solutions. So, I can calculate from here, so g square is kappa s 

kappa i mod E p square must be greater than delta k square by 4. So, kappa is kappa let 

me substitute, omega s d by c n s omega i d by c n i. Now, I substitute for mod E p 

square in terms of pump power; so, let me recall again, the pump power is n p by 2 c mu 

0 mod E p square into the area S; mod E p square is equal to 2 c mu 0 by n p into P p by 

s. 



So, this into 2 c mu 0 by n p into P p by s must be greater than del k square by 4, because 

one of the c goes off. And so, I get a condition for this quantity this is the intensity of the 

pump - P p is the pump power divided by area of cross section is the intensity of the 

pump. 
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So, I get a condition P p by s is must be greater than c n s n i n p divided by omega s 

omega i d square into delta k square by 8, so 8 either here; ya, mu naught. 

So, if you have perfectly phase matched, then the signal will get amplified as soon as the 

pump is crystal. Let me assume in phase insensitive case, so I have add the crystal, I 

have putting pump inside and I have a signal coming in, so I switch off the pump, the 

signal does not get amplified. As soon as I switch on the pump, if I am perfectly phase 

matched, the signal at the output is more than signal at the input always. 

But if I am not perfectly phase matched, then there is amplification only if the pump 

power incident is more than this quantity. So, this will defined to me, a range of 

wavelengths or frequencies over which this amplifier will amplify the signal. Please note 

that I can achieve delta k is equal to 0 at one particular signal frequency. 

So, suppose I take at following experiment. So, here is my crystal, I put in omega p and I 

put a signal omega s; so, at one particular frequency, say omega s is equal to omega 0, 

delta k is equal to 0, it is called as omega s is 0. 



One particular signal frequency satisfies this condition, that k p is equal to k s plus k i. 

Now, if I vary my signal frequency around this wavelength, around this frequency, as I 

change my omega s from omega s0, this condition is no more satisfied, because k p 

remains constant, but k s and k i both will vary. 

Please remember, these two frequencies omega p is also equal to omega s plus omega i. 

So, if I keep the pump frequency constant and change the signal frequency, the idler 

frequency will change, because idler frequency is omega p minus omega s. When omega 

s and omega i change, k s and k i will change, because the refractive indices are 

functions of frequency. So, k s and k i change and this condition may not be satisfied. 

So, as soon as they change my signal frequency from omega s0, delta k will become 

finite. And when delta k becomes finite, the gain will decrease, because look at this 

equation, the exponential factor is even if g is bigger than this number, this quantity is 

smaller than exponential gz, which we got for delta k is equal to 0. 

So, there is a lesser gain, the gain will start to fall. And when g becomes equal to delta k 

by 2, that is the critical point; beyond which, the gain will, there would be no gain, it is a 

oscillatory function now. The gain drops and so we can define what is called as a 

bandwidth of the amplifier. What is the range of signal frequencies over which the 

crystal will be able to amplify? That will be determined by how delta k changes the 

frequency. 

So, at omega s0, I have delta k is equal to 0, there is amplification. As I change my 

frequency from omega s from omega s0, as I increase or decrease the frequency, delta k 

becomes finite; and when delta k becomes finite, the gain drops. And as I change the, as 

I increase delta k, soon I will reach a point, where the pump power is not sufficient to 

overcome this delta k given by this equation. And the gain, there will be no gain, there 

will be no more gain and the signal output will drop down. 

So, like every amplifier, this amplifier also has a certain bandwidth over which the signal 

will get amplified and that will be determined by how this delta k varies with the 

frequency. 



So, this is same situation whether you are looking at quasi phase matching or phase 

matching; for quasi phase matching, delta k will also have a capital K in that equation. 

So, delta k for birefringence phase matching is k p minus k s minus k I; delta k for quasi 

phase matching is k p minus k s minus k i minus capital K. So, there is an additional the 

periodic spatial frequency factor coming from the nonlinearity added to the delta k. 
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So, this gives me a condition, under which I will be able to amplify the signal. And one 

can actually calculate what is the bandwidth of this amplifier. Let me before, now that 

this is an amplifier; in fact, what we will do next is to look at a situation, where I want to 

put this amplifier within a pair of mirrors. 

A pair of mirrors forms what is called as a resonate cavity; it is a resonator. So, when I 

put this amplifier within a pair of mirrors, I will convert this amplifier to an oscillator. In 

electronics, when you have an amplifier, if you feedback energy into the amplifier, you 

can make an oscillator. 

So, similarly, I have an amplifier and if I feedback the energy generated by the amplifier 

into the system back again, I can convert the amplifier to an oscillator and that is what I 

have called as an optical parametric oscillator. 

So, we will come to that little later, but right now what we have seen is, by these three 

wave interaction process between a pump signal and idler, I can actually amplify the 



signal and I can operate the amplifier in either phase: sensitive fashion or phase 

insensitive fashion. Now, before we go into the oscillator, I want to discuss one 

interesting feature. Because this we will need, when we come back to the quantum 

picture of light and look at this same process in a quantum mechanical analysis picture. 
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What I want to show you is, suppose I taken, let me go back to the old problem where I 

had a 2 omega-omega system; so, I have 2 omega coming in pump and omega. So, this is 

what is called as a degenerate optical parametric amplifier, because in this case omega s 

is equal to omega i, and omega p becomes 2 omega. The same situation as before, except 

that now, the signal and idler frequencies are the same. 

So, I may have, for example I can have a 1 micron wave coming in from here and this is 

two microns - smaller frequency the higher wavelengths – so, I can have a degenerate 

parametric amplifier; the equations are simpler here. So, I would like to show you that… 

So, what we had seen before is, what was the condition for amplification; remember, we 

had written E 1 is equal to u 1 exponential i phi 1 and E 2 is equal to u 2 exponential i 

phi 2; and we had shown that, if phi 2 minus 2 phi 1 is equal to minus pi by 2, there is 

amplification just like here. 

Look at the condition we got for amplification and attenuation, phi p minus 2 phi 0 2 phi 

1 phi 2 minus 2 phi 1, so this is phi 2 phi 1 phi 1. So, phi 2 minus 2 phi 1 is minus pi by 2 



in amplification and phi 2 plus 2 phi 1 sorry minus 2 phi 1 is equal to plus pi by 2 is 

attenuation. 

Now, what happens if my phi 1 does not satisfy either of these conditions? So, what I am 

going to show you is, that signal can be broken up into two components: one with satisfy 

this condition and the other satisfying this condition. This condition, that component of 

the signal which satisfies the first condition will get amplified; that component of the 

signal which satisfies the second condition gets de-amplified. What will be phase 

difference between the two signal components? 

Because 2 phi by phi by 2. 

Because, this is 2 phi 1, remember. The phi 1, the phase difference between these two 

components will be pi by 2, because this is 2 phi 1. So, if I fix phi 2, the phi 1 satisfying 

this equation and phi 1 satisfying this equation, the difference is pi by 2. So, if one varies 

the cos omega t, the other one vary a sin omega t; so, these are called quadrature 

component of the signal. 

If I give any signal sin omega t plus phi, I can write it as sin omega t cos phi plus cos 

omega t sin phi; so, there is a sin phi component varying a cos omega t and a cos phi 

varying a sin omega t. So, the sin omega t and cos omega t terms, which are called 

quadrature components, because there is phase difference of pi by 2 between them. 

So, what I want to show you explicitly is, one quadrature will get amplified, the other 

quadrature gets de amplified; this happens only in a phase sensitive parametric amplifier. 

If you do not have a phase, if you would have a phase insensitive amplifier, both 

quadrature’s, there is no quadrature’s there, every gets amplified. And because of this 

phase sensitive nature, these amplifiers have much lower noise figure, which makes, they 

add much less noise to the signal than a phase insensitive amplifier. 
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So, I will come back to this later again, when we look at some quantum noise that it 

generated exemplifier. But let me now try to show you, that I can write any signal which 

is coming in as a sum of two components: one component getting amplified and other 

getting de-amplified; it is a little bit of algebra. It is nothing difficult but, let me write 

down the solutions that we had got before. 
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So, what we need to do is to solve this equation again. We go back to the case where we 

had looking at 2 omega-omega case, E 2 E 1 star. So, we had obtained this following 



solution, E 1 z is equal to A sin hyperbolic gamma z plus B cos hyperbolic gamma z; so 

gamma was equal to kappa square mod E 2 0 square, which is equal to kappa square E 2 

0 square. In this case, E 2 is the pump, 2 omega wave - electric field of the 2 omega 

wave, E 1 is the electric field of the omega wave; then, we substituted sorry E 1 of 0 is 

equal, let me substitute, E 1 0 exponential i phi 10. 

So, this also tells me what should be dE 1 by dz, if z is equal to 0. So, I can find out both 

the constants A and B. Knowing E 1 of 0, I know the constant B; and knowing dE 1 by 

dz, if z is equal to 0, I also know the constant A and we had obtained the solution 

actually. So, let me rewrite the solution E 10 exponential i phi 10 cos hyperbolic gamma 

z plus i times E 10 exponential i phi 20 minus phi 10 sin hyperbolic. 

This contains the phase nature - phase sensitive nature, because if I take out exponential i 

phi 10 common, you can see that if phi 20 minus phi 10, and this I take care of 

themselves, then you have cos hyperbolic plus sin hyperbolic and you have an 

exponential increasing solution. So, this solution we had obtained earlier, where phi 1 0 

is the phase of the omega wave at the input, phi 2 0 is the phase of this 2 omega wave - it 

is a degenerate parametric amplifier case. 

Now, I will tell you the simplifications I do and I will finally give you the final results. 

All I need to do is, a right cross hyperbolic function as the sum of exponential; so, what I 

do is this, I write as E 1 0 exponential i phi 10 e to the power gamma z plus e to the 

power minus gamma z by 2 plus, now let me write this as, E 10 exponential i phi 20 

minus phi 10 plus pi by 2 coming from this I, into exponential gamma z minus 

exponential minus gamma z. I write the cos hyperbolic function in terms of exponentials, 

sin hyperbolic in terms of exponentials and then I collect the terms containing 

exponential gamma z and the terms containing exponential minus gamma z. 
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So, let me give you the final result, which you can actually… so, you just have simplify 

this and the final results comes out to be, let me write down here. It is a bit of algebra 

and you will get, E 10 exponential i phi 20 by 2 plus pi by 4 cos phi 20 by 2 minus phi 

10 plus pi by 4 into exponential gamma z plus E 10 exponential i phi 20 by 2 minus pi by 

4 cos phi 20 by 2 minus phi 10 minus pi by 4 exponential gamma z. 

It just algebraic manipulations between the terms; and what you get is one term which 

goes as exponential gamma z and the other term which goes as exponential gamma z. If 

you phi 20 minus 2 phi 10, if you choose this to be 0, then this becomes… if you choose 

this to be 0, what happens the second cos? 

That will be zero. 

They do not 0, because there is a minus pi by 4 here. So, there is one particular phase phi 

1 0, for which this is 0, the signal gets amplified; and if you choose this to be pi by 2, 

then the signal gets attenuated. 

So, these are essentially this is the same equation, I have now molded in a slightly 

different algebraic form. And you can see that, this the phase difference between these 

two terms is pi by 2, is an amplitude term here, there is a phase difference of pi by 2. So, 

these are the two quadrature components of the signal: one of them gets amplified and 



the other quadrature gets de amplified. So, if you wait long enough, this component will 

just disappear and this will keep on amplifying itself. 

So, unlike a conventional amplifier, the phase sensitive amplifier will amplify or de-

amplify depending on the phase of the signal and this will also happen for the noise that 

enters de amplifier. The noise that enters in one particular phase will get amplified, the 

noise that enters in another quadrature phase will get de amplified. 

So, the amplifier is actually decreasing the noise, is de amplifying the noise, because the 

noise which comes in its random; one of the components is in this phase, the other 

component is in pi by 2 order phase. And the amplifier actually manipulates the noise in 

such a fashion, that one of them gets amplified, the other quadrature phase gets de 

amplified. 

So, I will come back to this issue again later, when we talk of little bit of the amplifier 

noise characteristic. But this is a very interesting features of phase sensitive parametric 

amplifiers, that this amplifier amplifies one quadrature and it de amplifies the other 

quadrature; so, do you have any questions? 

Sir, this equation is resituate with the case, when phi 1 0 does not does not satisfy that 

any use two conditions explicitly. 

This is general, this is a very general solution; if phi 10 satisfies, this is equal to 0, then I 

get amplification; if phi 10 satisfy, this is equal to 0, I get de amplification which are the 

two conditions which we have got. Otherwise, this is the way the signal will develop 

itself; instead of writing in sin hyperbolic, cos hyperbolic form, I am just writing an 

exponential forms. 
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So, to be apparent, that one component is getting amplifier. But what is important to note 

is that, there is a phase difference of pi by 2 between these two components. Please note 

that this is a complex amplitude, the total electric field at omega is half E 1 of z 

exponential i k 1 z minus omega t plus complex conjugate; this is only the complex 

amplitude of the electric field. 

So, the total electric field at the set of the fundamental is, half of this E 1 of z exponential 

i k 1 z minus omega t plus complex conjugate; this just not have the time dependent 

term. So, I must substitute here and you will automatically find that, this term and this 

term are pi by 2 out of phase. So, I leave it to you, why do not you substitute this into 

this equation and write it finally in terms of a sum of two real terms: one which goes up 

exponentially and the other one which goes down exponentially. 

So, this term, this plus this will substitute here, plus its complex conjugate; so, you can 

actually collect all the exponential gamma z terms, collect all the exponential minus 

gamma z terms, and you will see that the two components are pi by 2 out of phase. 

So, any input signal can be broken up into two components: one which gets amplified 

and the other component which is pi by 2 out of phase, with that with respect to that 

getting de amplified. So, this concept we will use later, when we discuss little more on 

noise of amplifier.  



Anything else? 

Sir, the noise in this first part, I mean first component it gets amplified, the other gets de 

amplified; so, how can we say that its de amplifying the noise? 

No, this one quadrature amplifier. See, for example, 

But we should be concerned is, with what the output, the noise the output has it is, it has 

the same noise, because I mean we break the noise into two parts and one is decaying 

another is amplifying. 

If you do the same thing for phase insensitive case, both components getting amplified; 

so, the noise already I can see that, the noise output here must be lower than the noise 

output in other case, because one of them is at least is de amplified by the amplified; not 

amplified. It is not even kept constant, it is de amplified. Now I will show you 

mathematically later on that the…  

In theory, this amplifier is a noise free amplifier; it does not add any noise to the signal 

as it amplifies. Normally, there is no all amplifiers, standard amplifiers, phase insensitive 

amplifiers will always add noise to the while it amplifies. So, you put on the signal with 

a certain amplitude and some signal and noise, the signal gets amplified, noise gets 

amplified, and I prefer add this own noise. So, the signal to noise ratio at the input and 

signal to noise ratio at the output are not the same. In fact, this signal to noise ratio at the 

output is worse than signal to noise ratio at the input. 

So, that is the price you pay for amplification, you add noise. But this amplifier I will 

show you later, can amplify the signal without adding any noise. And people would 

demonstrate experimentally that the noise figure of these amplifiers is much lower. In 

fact, there is a quantum limit - its 3 d b; that means, high gain amplifiers will worsen the 

figure the noise ratio by at least the factor of 2. 

If your input signal at the noise ratio is 100, that signal is 100 times the noise and the 

output the best you can get is, the signal is 50 times the noise. Both are increased: the 

signal is increased, noise has increased, but the ratio as decreased by a factor of 2; that is 

the best you can get by quantum mechanics for high gain amplifier, but this one, the 

input signal to noise ratio and the output signal to noise ratio are the same. 



(Refer Slide Time: 48:28) 

 

So, you amplify the signal, you amplify the noise, the amplifier does not add any noise to 

the signal. So, it is a very interesting feature of this and this is being used perceived for 

various applications ((no audio 48:27 to 49:58)) 

So, the problem is we have an input light at 1.2 micron wavelength carried 0.1 milliwatts 

of power entrance the crystal and interacts with a 1 watt power of a 0.8 micron 

wavelength light. 

The 1.2 micron wavelength gets amplified to 0.2 mill watts, so it goes from 0.1 milliwatt 

or 0.2 milliwatts and as it comes out; now, what is the power exceeding at 0.8 microns at 

the output? 

Sir, 100 percent efficiency. No, I am giving all of the numbers, so I think we will stop 

here. 


