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Today, look into the three wave interaction process, where we have three frequencies 

simultaneously present inside the media. So, second harmonic generation and the 

degenerate parameter down conversation will be the special cases of this. 

(Refer Slide Time: 00:45) 

 

 

So, the problem we are looking at is - you have a crystal in which there are three 

frequencies present simultaneously - omega p, omega s, and omega i; they are satisfying 

the condition omega p is equal to omega s plus omega i. 

So, depending on input conditions, I will have either of the various situations. So, for 

example, I can have an incidents of omega s and omega i to generate a new frequency 



omega p is equal to omega s plus omega I, this will correspond to some frequency 

generation, because the new frequency coming out is the some of these two frequencies. 

If you have an omega p incident and an omega s incident, I will generate an omega i 

which is omega p minus omega s; this is difference frequency generation. p stands for 

pump, s stand for signal, and i stands for idler; these are names which have been 

borrowed from microwave technology. 

So, here is, in the situation,  photons at frequency omega, one photon at frequency omega 

s and one photon at frequency omega i, combine to form one photon at frequency omega 

p. In this process, photon and omega p frequency interacts with omega s frequency 

photon, and the omega p photon splits into an omega s photon and an omega i photon. 

So, in the process generating an omega i photon, and as you can see, the number of 

omega s photons will increase. 

So, omega s will get amplified and in the process of generating the difference frequency. 

So, this is the, I will show you that this is a parametric amplifier, the signal will get 

amplified and in the process generate a new frequency omega i. So, the term comes from 

the fact that because this is the input signal, which is usually weak and you have a strong 

pump coming in, you can amplify the signal omega s and as a bonus you get a new 

frequency generated, which is omega i, the idler. 

So, this is more for amplification or generation of a new frequency. If I use it as a 

generator of new frequency, I will amplify the signal, so, I will, but my interest is in 

omega i. But if my interest is in generating in amplifying omega s, I will amplify omega 

s, but in the process generating omega i, which will be, which I do not need to worry 

about that omega frequency will come out and I pick up the (( )) omega frequency. 

Sir for connect frequency omega p will split into omega s and omega i that is why omega 

s will (( )) Yes, because I cannot generate omega i, I generate omega i by splitting omega 

p into omega s and omega i. 

So, omega i will get generated and come out and every time an omega i photon appears, 

an omega s photon also has to appear, because of energy conservation. So, the number of 

omega s photons will increase as the interaction proceeds. So, omega s will get simply 



amplified. I can actually come to a situation which we will discuss later that I have all 

three incident. 
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Here, the omega s will either can amplify or attenuated, depending on the phase at which 

these frequencies are being incident. In this case, omega s gets amplified irrespective of 

the phase of the signal; so, this is called phase insensitive amplifier. If I put all the three 

frequencies simultaneously, the omega s signal can get amplified or attenuated 

depending on the phase relationships between the wave omega p, omega s, and omega i. 

So, I can use this process as a phase sensitive amplifier or a phase insensitive amplifier. 

The case we had considered earlier, where omega s was equal to omega i. This process 

with omega s equal to omega i is nothing but second harmony generation, and this 

process with omega s equal to omega i is nothing but the parametric down conversation 

process we had studied. 

So, the case we had considered is a degenerate case, where omega s and omega i become 

equal, but in general, omega s need not be equal to omega i. So, this is the most general 

case of three wave interaction where I have three frequencies interacting simultaneously 

within the crystal - one at frequency omega p, one at omega s, and one at omega i, and 

the three frequencies satisfy this condition that omega p is equal to omega s plus omega 

i. 
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So, we use the same procedure as we did before. This interaction is completely non-

linear; so, what we need to do is remember in second harmonic, what did we do? We 

started from this equation P non-linear is equal to 2 epsilon 0 d E square, where E is the 

total electric field within the crystal. A second harmonic case, we said E consists of 

waves at frequency omega, added to omega. 

Now, in this case, the electric fields will consist of three parts: electrical field at omega p, 

electric field at omega s, and electrical field at omega I, all three frequencies will be 

present; so, E the total electrical field will actually consist of E at omega p plus E at 

omega s plus E at omega i. 

So, for example, I will have E at omega p, I will write as half of E p exponential i k p z 

minus omega p t plus complex conjugate; k p is the propagation constant of the wave at 

frequency omega p, and E p is complex electric field of this omega p wave; this is 

assumed to plain wave propagating along the z direction, and as before, because of this 

non-linear interaction, E p will be a function of z. 

Similarly, I will have for E at omega s half of E s exponential i k s z minus omega s t 

plus complex conjugate, and E at omega i will be equal to half of E i exponential i k i z 

minus omega i t plus complex conjugate. E p, E s, and E i are the electric field 

amplitudes of the fields of the waves at omega p, omega s, and omega i respectively. 



So, k p dependents on the refractive index of the medium at frequency omega p. So, k p 

is omega p by c into the refractive index at tip top at the frequency omega p, which I call 

n p for example. So, k p will be something like omega p by c into n p; similarly, k s will 

be omega s by c into n s, and k i will be omega i by c into n i. 

So, now, what do I do? How do I proceed? I have to calculate, I have to substitute in to 

the non-linear wave equation. Remember, we wrote the electric fields first, before that I 

need to calculate now, what is the non-linear polarization generated at these three 

frequencies? (Refer Slide Time: 10:03) So, I have to substitute the sum of this equation 

in to this equation and pick up terms, which will give me non-linear polarization at 

frequencies omega p, omega s and omega i. 

Now, can you tell me from here, what will be P non-linear at omega p? So, I want to 

write P non-linear at frequency omega p, so, what I have to do is - to substitute the sum 

of these three and square it. So, what will be the term I will get at omega p frequency? 
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So, 2 epsilon 0 d into E square will be half epsilon 0 d, please note that this d is an 

effective non-linear coefficient, I am not writing d i j k. For a given orientation of the 

crystal, for a given propagation direction, for given polarization sates of these waves, I 

can, and for a given crystal, I can obtain this equation by substituting and calculating like 

we did for k d p and for lithium niobate, may be will two can example later, but d is an 



effective non-linear coefficient which depends on the state of polarization of the waves at 

omega p, omega s, omega i and also the non-linear tenser of the crystal. 

Now, can you tell me, if I substitute this, what is the term I will get at omega p 

frequency? With any additional factor multiplying 

 (( )) 

No, before that a multiplying factor I will have a plus b plus c plus d plus e plus f whole 

square; so, you are picking up a product of those two terms and there will be a factor of 

2; so, you will have 2 E s E i exponential i, what will I get in the exponential? 

(( )) 

Not k p 

K s plus k i into z minus omega p t plus complex conjugate, when you write all this and 

take a square, you will get twice E s E i, and actually, I would have got omega s plus 

omega i into t and omega s plus omega i is omega p and plus its complex conjugate and 

nothing else. 

Similarly, P non-linear at omega s will be half epsilon 0 d 2, what will I get?  E p E i star 

exponential i k p minus k i z minus omega s t plus complex conjugate, please note, 

because omega s is omega p minus omega i, I will get E p E i star and I will get k p 

minus k i. 

Similarly, P non-linear at omega i will be equal to half epsilon 0 d 2 E p E s star 

exponential i k p minus k s z minus omega i t plus complex conjugate. 

We are using the same procedure as we did for second harmonic; this will contain more 

polarization terms, non-linear polarization terms and many other terms. We are not 

bothered about that because as we have seen already for efficient non-linear interactions, 

we need to consider only those terms which are close to phase matching. 

So, we will assume that in this process, we somehow will manage, will find out what is 

the phase matching condition required for this process to take place and we are assuming 



that it has been almost matched; so that I am only worried about three frequencies - 

omega p, omega s and omega i. 
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So, what did I do after this, for second harmonic? I substitute into the wave equation, 

remember, there was wave equation which we wrote down what was the wave equation? 

Suppose, I was looking at wave equation for omega p, I will have del square E of omega 

p minus mu 0 epsilon at omega p del square by del t square of E at omega p is equal to 

mu  naught del square by del t square P non-linear at omega p. 

For second harmonic, we had written del square E 2 omega minus mu 0 epsilon to omega 

del square by del t square E of 2 omega is equal to mu 0 naught del square by del t 

square P non-linear at 2 omega. 

Each one of the frequencies must satisfy the wave equation. This is the source term, the 

non-linear polarization of the source term which is influencing the propagation of the 

corresponding frequency. 

Similarly, I have an equation for omega s, where I just replace omega p by omega s, and 

another equation omega i, where I replace omega p by omega i. 
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So, what I need to do is, now to substitute in this equation, substitute this expression for 

E of omega p and P non-linear at omega p on both sides and equate the terms coefficient 

of exponential minus i omega p t on both sides exactly the same procedure that I 

employed for second harmonic generation, and what did I neglect? 

The second derivate of E p with respect to z, and I will use the condition that epsilon 

omega p and k p are related, k p square is equal to mu naught epsilon omega p into 

omega p square, the propagation constant and the permittivity are related through this 

equation. 

So, if I use all this, this equation will simplify to the following equation. So, let me leave 

this substitution and simplification of this to you. Substitute the expression for E omega 

p from here, substitute the expression for P non-linear omega p from here, in to this wave 

equation and equate the terms the coefficient of exponential minus i omega p t on both 

sides. 
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Neglect the secondary derivative E p with respect to z and use the relationship between E 

epsilon omega p and k p and you will land up with this equation - d E p by d z is equal to 

i omega p d by c n  p E s E I, E s E I exponential minus i delta k z, where delta k is k p 

minus k s minus k i. 

It is very similar to the equation we had obtained earlier, d E 2 by d z i omega d by c n 2 

E s E 1 square, etcetera, same equation, exactly a similar equation; except that, now, 

there is a particular frequency omega p and n p is the refractive index of the medium at 

the frequency omega p, and delta k is k p minus k s minus k i, there it was k 2 minus 2 k 

1; so, if s is equal to i this simply becomes k 2 minus 2 k 1, exactly like the second 

harmonic. 

So, this is the equation describing the change of E p, the amplitude of the electric field at 

omega p frequency as the wave propagates and this depends on the non-linear coefficient 

d and the electric fields at signal and idler frequencies. 

Similarly, let me give you the other two equations - d E s by dz is equal to i omega s d by 

c n s E p E i star exponential i delta kz, and d E i by dz is equal to i omega i d by c n i E p 

E s star exponential i delta kz. So, that is a separate definition of delta k. 

 So, you have three equations coupled equations, three coupled non-linear equations 

connecting the electric field amplitudes of signal, idler and pump. 



The d is the  non-linear coefficient, effective non-linear coefficient that is responsible for 

this interaction. Please note that if I do not choose the polarization states appropriately, 

the d element, the t tenser element, which is responsible for this may become 0. So, I 

have to be careful, but I am assuming that I am using a situation where the polarization 

states of signal, idler and pump are such that d coefficient is finite; there is a non-linear 

tenser element, there is a coupling between these three waves. 

Now, as before, we will see that maximum interaction will take place for maximum 

efficiency of this interaction delta k must be 0, which is again the phase matching 

condition. 
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So, the phase matching condition, I will get here is k p is equal to k s plus k i, which 

means that I must have in terms of photon picture - the momentum of the pump photon is 

the sum of the memento of the signal and idler photons, that is generating or whatever it 

is. 

In all the three process, whether it is sum frequency generation, difference frequency 

generation, parametric down conversation, whatever it is, I need to satisfy this condition 

for efficient interaction between these three waves. 

Note that I can use the same quasi phase matching principle here, because in quasi phase 

matching, d becomes the function of z. So, what is the quasi phase matching condition? I 



need to satisfy. So, if I had a d varying with z, like sin capital k z, what should be the 

condition I will have to satisfy?  k p minus k s minus k i must be equal to K, delta k must 

be equal to capital K. So, here, if I draw the vector diagram, I have a k p, k s, k i. By 

convention, the signal frequency is supposed to be higher than the idler frequency. 

Pump frequency is the highest frequency, because omega p is omega s plus omega i, the 

highest frequency among these three is omega p, the pump frequency, then comes the 

signal frequency and then the idler frequency. 

So,  in the wave length space, idler is the longest wave length and pump is the shortest 

wave length. So, if I start with a wave length of 800 nanometers, so, 800 nanometer 

could be pump, 1300 nanometers could be signal, and I have something else which is 

around 1800 or 2 microns are something like as the idler. So, omega p is equal to omega 

s plus omega i, and conventionally, the signal frequency is higher than the idler 

frequency. 

So, the signal wave length is shorter than the idler wave length. (Refer Slide Time: 

23:49) This will be, in this quasi phase matching condition, this is k p. I have k s plus k i 

plus K; this is K, this is k i, this is k s, and it is for this reason that I am drawing the k s 

vector to be longer than the k i vector, because omega s is higher than omega i. 

The refractive indices are not very different, they are different, but they are not very 

different. So, k s is omega s by c into n s; k i is omega i by c into n I, and because omega 

s is bigger than omega i, k s is usually bigger than k s. 

So, the way I have drawn here, I have drawn the vector k s to be bigger than k i and k p 

is the biggest vector. Here, this is the quasi phase matching where I am not perfectly 

satisfying the phase matching condition, but I am having a periodic variation in the non-

linear tenser coefficient d, such that it compensates for this delta k that is appearing here. 

So, the discussion that we had for QPM for second harmonic is exactly valid here, 

provided I choose a capital K which satisfies this condition, which is the quasi phase 

matching condition. 
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So, now, these three equations are the most general equations describing these three 

wave interaction process and we can use these three equations to study any one of the 

processes. Some frequency generation is difference frequency generation, and as before, 

I can show that if you have only the pump incident, you will not be able to generate 

signal and angular; this requires a spontaneous down conversation. So, if I take a crystal 

and shine only omega p, classically, just, omega p just propagates. 

Quantum mechanically, I can show that an omega p incident can spontaneously generate 

an omega s and an omega i satisfying omega p is equal to omega s plus omega i. 
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Now, because this equation has infinite number of solutions; for a given omega p, there 

are infinite combinations of omega s, omega i, which can sum to omega p. 

So, which pair will come out, that pair satisfying the phase matching condition. (Refer 

Slide Time: 26:10) Because I need to satisfy this condition, as well as the phase 

matching condition if I need to satisfy, if I need to generate efficiently which means, I 

need to satisfy omega p is equal to omega s plus omega i and this condition or this 

condition. 

There will be one pair of frequencies which will satisfy both these conditions; for given 

omega p, k p is fixed. For example, if I look at these two equations for a given omega p, 

k p is fixed and there is one omega s, omega i combination, which will satisfy both these 

equations that will be the one, which will be most sufficiently generated in this process. 

Omega s omega i the first equation (( )) we are getting omega p is equal to omega I, that 

equation is different 

You have to be careful, because  there is, what happens is - for second harmonic, we 

have only one wave incident. So, when omega s becomes equal to omega i, we did not 

consider there were two waves at omega which were incident; so, there is a factor of two 

which will be coming because of this problem. So, I have to, that is why I did second 



harmonic  from the first principle, so, I got an equation; I do the same thing here, but I 

cannot substitute omega p is equal two omega and go there. 

Because, then remember here, there are two waves incident; I did not consider two 

omega incident and one or two omega have been generated; so, there is no direct transfer 

for here to there. 

(Refer Slide Time: 28:08) 

 

So, now, the first example let us look at difference frequency generation. So, we just 

look at this today and understand what is happening in the difference frequency 

generation. 

So, what is difference frequency generation? I have the non-linear crystal, I launch an 

omega p wave and an omega s wave, and my objective is to generate a wave at the 

difference frequency omega i, which is omega p minus omega s and I will show in this 

process, omega s will get automatically amplified. 

So, I can look at this problem as if I want to amplify omega s or to generate omega s, it is 

a same problem. So, how will I solve these three equations? So, what is the 

approximation I will make (( )) depletion which means, I will assume E p is almost a 

constant, so, I do not have to worry about this equation. I have to only solve these two 

equations simultaneously, assuming E p is a constant. 



So, and, so, let me first assume delta k is equal to 0 to get some easy solutions. So, I will 

have two equations d E s by dz is equal to i. Now, let me write this as kappa s into E p E 

i star and d E i by dz is equal to i kappa i E p E s star. So, I am solving the equations for 

the case delta k is equal to 0, because I know already that the maximum generation of 

difference frequency will take place, if I satisfy the phase matching condition. 

So, in these two equations, I am going to assume E p is a constant. So, let me, for 

example, because I am looking at generation of E i or the electric field at frequency 

omega i, let me differentiate the second equation. So, I will get d square E i by dz square 

is equal to i kappa i; so,  kappa s is omega s d by c n s, and similarly, kappa i is omega i 

d by c times n i. 

So, i kappa i E p into d s star by dz, which is the complex conjugate of this one, which is 

minus i kappa s E p star E i; (Refer Slide Time: 30:56) so, this is equal to kappa s kappa i 

mod E p square into E i. 

I am assuming E p is a constant - is a high power pump coming in, so, I am assuming E p 

is a constant. (Refer Slide Time: 31:30)So, let me call this as, g square is this coefficient 

kappa s kappa i mod E p square, this is g square. 

What is the solution of this equation?  

So, E i of z sin hyperbolic (( )) hyperbolic 

(Refer Slide Time: 31:51) 

 

 



 

So, E i of z is equal to A sin hyperbolic gz plus B cos hyperbolic gz, how do I get the 

solution? For E s, I have  another equation, but they are not independent remember. 

We can subtract the power 

No, I want, not in terms of power, in electric fields. So, what do I do? I have a solution 

for E i. 

(( )) the linear energy will be proportional in both of them 

But, you see, I want electric fields, not powers. Powers will be (( )) square, I want the 

electric fields. 

I can again differentiate the first equation, substitute from the second equation, but I left 

two more constants c and d; I do not have to do that, I can substitute my solution here 

and get equation for E s star. Actually, I can do c and d, and then I have to substitute 

back in to this equation and make sure that they are satisfying this. So, instead of that, I 

just substitute E i of z in the second equation and get the following equation. So, i kappa 

i E p E s star of z is equal to d E i by dz, which is g times A cos hyperbolic gz plus B 

times sin hyperbolic gz. 

So, E s star of z is equal to minus i g by kappa i E p A cos hyperbolic gz plus B sin 

hyperbolic gz. I remember, we had written g square is equal to kappa s kappa i mod E p 

square. 

Now, let me assume that I defined the phase of the pump as 0, that is E p is the real 

quantity; E p remains constant and I take the phase of the pump as the reference phase, I 

relate all phases to that pump phase. 

So, I assume E p is real quantity, so, this simply becomes kappa s kappa i into E p 

square. So, E s star of z is minus i, so, this g is now square root of kappa s kappa I, E p 

cancels off and I get kappa i into A cos hyperbolic gz plus B sin hyperbolic gz, which is 

minus i square root of kappa s by kappa i A cos hyperbolic gz plus B sin hyperbolic gz 

plus B sin hyperbolic gz. 



(( )) 

No, phase is also assumed to be 0 real,  not decaying means, amplitude of E p remains 

constant, but I am also assuming the phase, I am relating all phases to that I could have 

substituted, but then I will get an extra phase sitting here that is all. (Refer Slide Time: 

36:03) If I had written E p as E p times exponential i by p, I will get here, there will be 

an exponential minus i by p because of this E p here and there is mod E p square in g, but 

E p in here, so, I will have an exponential. Some phase factor will be sitting, it does not 

matter, but we will come to it a little later when we have all three waves incident and I 

look at a phase sensitive amplification process. 

Now, what is kappa s by kappa i? Actually, I can substitute kappa s kappa i and I get this 

equation, so, this is E s star of z minus i. Now, kappa s by kappa i is how much? 

(( )) 

There is also omega. 

(Refer Slide Time: 36:54) 

 

So, I will have square root of omega s and i by omega i n s into A cos hyperbolic gz plus 

B sin hyberbolic gz; so, these are the two solutions, E i of z and E s star of z. Now, how 

do I find out the values of A and B? Apply boundary conditions. 



So, at z is equal to 0; so, normally, what I will have is – here, this is my problem. So, z is 

equal to 0, which I call this plane E i is 0. So, at z is equal to 0, E i of 0 is equal to 0, and 

E s of 0 is sum E s 0, there is some signal incident at the input and no idler, just a signal. 

So, what are the values of the constants I get? (Refer Slide Time: 38:12) 

 The first one tells me B is 0, because this is 0 at z is equal to 0 that means, B is equal to 

0, and E s 0 must be equal to minus i square root of omega s n i by omega i n s into A. 

(Refer Slide Time: 38:37) Because if I substitute here,  B is anyway 0; so I get A is into 

this is equal to E s star, so, E s star of 0. So, A will be equal to i times square root of 

omega i n s by omega s n i into E s 0 star. 

(Refer Slide Time: 39:14) 

 

So, here, at solutions, finally solutions which I get from these two equations are So, if I 

substitute the values of A and B in this E i of z, so, E i of z is equal to B 0 s A sin 

hyperbolic gz, so, i times square root of omega i n s by omega s n i E s 0 star sin 

hyperbolic gz, and E s star of z is equal to E s 0 star minus i into this will be E s 0, so, E 

s0 star cos hyperbolic. (Refer Slide Time: 40:00) A times this minus is actually E s 0 

star; so, I get A E s star of z is E s0 star cos hyperbolic gz. So, at z is equal to 0, this is 0, 

and this is E s 0 star. 



So, first thing you notice is that, at z is equal to 0, there is no idler, but as z increases, the 

idler amplitude keeps on increasing. Sin hyperbolic function, how does it behave? As 

extent as the argument times infinity, it keeps on increasing; it is monotonically 

increasing function. 

So (( )) idler will keep on increasing. Of course, as before, I cannot use these equations 

when the efficiencies become very large. So, there is an increasing of the idler power, 

but the signal power is also increasing; cos hyperbolic gz is also an increasing function 

of z. (Refer Slide Time: 40:55)  

So, this process generates an idler, but also amplifies the signal and the amplification 

here is independent of the phase of the E s 0 the stage appearing here, but mod E s is 

square is always cos hyperbolic square gz. 

So, this signal will get amplified irrespective of the phase of the signal with respect to 

pump or idler whatever it is, independent of this input condition this signal will always 

get amplified provided, I satisfy the phase matching condition. 

So, this is an example of phase insensitive amplifier, where the amplification takes place 

irrespective of the phase of the signal. (Refer Slide Time: 41:42) Why is this coming 

factor? Please remember that every time there is a signal generated, there will be an idler 

generated. 

So, the number of photons that are coming out at the idler frequency must be equal to the 

increase in the number of signal photons coming out of the crystal, because I cannot 

generate a million idler photons without having also generated a million signal photons. 



(Refer Slide Time: 39:14) 

 

So, the increase in the number of signal photons must be equal to the generated idler 

photons, because at the input there was no idler, because every time an idler gets 

generated, a signal will generated. So, we will discuss this, we will discuss these 

solutions a little more detail  in the next class. (Refer Slide Time: 42:43) 

So, what I will show you is that this is simply the process that the pump photon is 

splitting  into an idler and signal photon, which is generating an  idler photon, and a 

signal photon. 

But please remember, here - these are Maxwell’s equation, we have not quantized the 

radiation at all and these conclusions are arising just from the classical equations. I will 

show you that the number of idler photons coming out is exactly equal to the increase in 

the number of signal photons, and we will derive an equation called the (( )) relation 

which tells you this relationship between the number of photons coming out at the signal 

idler. Also remember that if I have generated a million idler photons, how many pump 

photons should I have lost? (( )) Same in one million. 

So, if I had generated million idler photons, I should  have lost a million pump photons 

and I would have also generated a million signal photons; I am not conserving the 

number of photons, because I am splitting the photons.   



So, I have a million photons coming in, I convert all of them idler and I also generate a 

million signal photons; there will be two million photons coming out, but each photons 

has a lower frequency there, a lower energy; so, energy conservation is always 

maintained. Do you have any question? Otherwise, you will have a quiz. 

(( )) does it come because of the boundary condition Right now, we have assumed that 

the input at only the signal and the pump. Later on, I will look at case where the input 

contains signal, idler and the pump. Because in the last case also when (( )) In the 2 

omega case 

 You see, in that case, I cannot have 1 omega coming in and 1 2 omega coming in and 

not the other omega coming in, because here I can, because I have three frequencies, I 

can have omega p and omega s and no omega at the input. 

There if I put omega, then I have both the inputs, it is as if putting all three waves 

simultaneously. So, there was no situation of phase insensitive case in the 2 omega 

omega case. Here I can have either omega p, omega s input or omega p, omega s and 

omega i input. 

 (( )) phase sensitive All of them will have to be phase sensitive And for theta equal to (( 

)) This is always phase sensitive; so, the amplification  not depends on the phase of the 

signal of omega with respect two omega. Here, because there is only omega s and omega 

i incident, the phases of the various waves automatically get fixed up to amplify the 

signal and to generate the idler. 

What we require (( )) ultimately they are still having a phase matching No, that is phase 

matching;  phase match - that means, delta k is equal to 0, what I will show you later on 

is that if I input this signal, idler, and pump simultaneously, the signal will get amplified 

only under certain condition of phase relationship between the signal and idler and 

pump. If I change the phases of the signal, I will get de amplification, that means, I can 

either have omega p generating omega s omega i and amplifying omega s or omega s and 

omega i mix together to generate omega p, which will attenuate the signal. 
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So, depending on the phase relationships, I will either amplify the signal or attenuate the 

signal. So, the energy is getting converted some omega p to omega s or omega s to 

omega p, and that will be phase sensitive. 

So, that will be phase sensitive nature of an amplifier; here, there is no phase sensitivity, 

because the idler automatically picks up its phase, so that the signal always gets 

amplified and that is the difference between phase insensitive and phase sensitive. 

Phase sensitive we will look at little later, but right now, we will discuss a little bit more 

on these solutions and get some important conclusions from these solutions. Anything 

else.? 
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So, we have a quiz now. Fine, the last quiz before the (( )) This is quiz number 3. So, the 

problem is - we are considering second harmonic generation in lithium niobate, the 1 

micro meter wave is an ordinary wave and the 0.5 micro meter wave is extraordinary 

wave and both of them are propagating along the y direction; this y is the principle axis, 

y direction. What is the quasi phase matching period required for this process - first order 

quasi matching period? 


