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So, we continue with our discussion on quasi phase matching. So before I start, do you 

have any questions from the earlier lectures? 
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So, let us continue with our discussion on quasi phase matching also called Q P M. So, 

let us recall the electric field at the second harmonic, satisfies an equation given by i 

omega d by c n 2 exponential minus i delta k times z, where delta k is equal to k 2 minus 

2 k 1, which is equal to 2 omega by c n at 2 omega minus twice omega by c n at omega, 

which we had also written as 2 omega by c n 2 minus n 1. 

So, delta k is phase mismatch between the waves at omega and 2 omega, and depends on 

refractive indices of the medium at frequency omega and frequency 2 omega; n 1 is n of 



omega, the refractive index of the medium at frequency omega, and n 2 is n of 2 omega, 

the refractive index of the medium at frequency 2 omega. What we also saw is that 

because of this term, so there is an E 1 square, because of this term, the amplitude of the 

second harmonic field does not grow continuously, but oscillates. 

So, let us recall; we have a curve looking like this; this is z and I can write here, either 

the power in the second harmonic or the efficiency it goes up and down periodically. 

This distance was called L c; this is 2 L c, L c is the coherent length of this interaction 

process and is given by L c is equal to pi by delta k. 

So, what is actually happening is, as we discussed last time, the second harmonic electric 

field grows until some distance L c, at which point the phase difference between the non-

linear polarization at frequency 2 omega and the electric field at 2 omega becomes pi, 

and beyond this point the non-linear polarization actually feeds energy into the second 

harmonic, which is out of phase with existing electric field resulting in a drop in the 

electric field of the second harmonic.  

The electric field of the second harmonic becomes 0 at 2 L c and then again starts to 

grow. We also saw that, if you take typical values of refractive indices at frequency 

omega and 2 omega, because of dispersion the peak efficiency that you can get is 

extremely small. 

So, it is extremely important to make sure that delta k is 0 or very close to 0; so that the 

efficiencies can be reasonably high. Now, if you can make delta k is equal to 0, we get 

what is called birefringence phase matching, which we have seen earlier. But I can 

actually use another technique to achieve, what is called as quasi phase matching. So, in 

this equation what we would like to do is to make d, a function of z and a periodic 

function of z. 
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So, last time we saw that if I take  d of z is equal to d 0 sin k z; let k is the spatial 

frequency of this variation and given by 2 pi by lambda, where capital lambda is the 

period of the variation of d, then what happens actually is that, at this point instead of the 

second harmonic decreasing in amplitude it grows; again, it continues to grow up to this 

point and then again, instead of dropping down, it continuous to grow. 

So, there is a an increase of the efficiency of the second harmonic generation, because 

every time you have a phase difference of pi between the non-linear polarization and the 



electric field, you introduce a change of sin of d, which is essentially a change of phase 

of pi of the non-linear polarization term. So, this way you can actually overcome this 

decrease in efficiency and this technique is called quasi phase matching. 

 So, remember, what we had done was, we substituted this expression for d in this 

equation, and which you write sin in terms of two exponentials; what you find is, you 

have one exponential term, which is exponential I capital K minus delta k z, and you 

have a another exponential term, exponential minus I k plus delta k z. 
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So, if I can make capital K is equal to delta k; one of these terms has no phase terms and 

that term, when I integrate this equation gives me an increasing electric field of the 

second harmonic. So, what is the spatial frequency required for phase matching or quasi 

phase matching k is equal to delta k. This implies that 2 pi by lambda is equal to delta k, 

which is 2 omega by c into n of 2 omega minus n of omega or lambda is equal to pi c by 

omega into n of 2 omega minus n of omega, which is equal to pi c by omega into n 2 

minus n 1. 

This period of quasi phase matching depends on the refractive indices at the frequency 

omega and 2 omega, and also of course the frequency omega itself. We had seen last 

time that if you take a typical wavelength of eight hundred nanometers, we can calculate 

what is the capital lambda required in the case of Lithium Niobate and we found it is of 



the order of three point three microns or so. So, it is a very small period required which 

means you need to exchange; you need to change the direction or the sign of the d 

coefficient every 3.3 microns or so. 

Also note that this particular period depends on the frequency or the wavelength. So, if 

you take second harmonic generation of 800 nanometer wavelengths to generate 400 

nanometers, I need to know the refractive index of the medium at 800 nanometers n 1; I 

need to know the refractive index of the medium at 400 nanometers, which is n 2 and 

then I can substitute into this equation and get the period. 

Now, if you change this wavelength slightly say from 800 to I change it to 810 

nanometers, then note that the frequency will change, the refractive indices will change 

and so the required capital lambda will also change. So, what this implies is that if you 

take a particular fundamental wavelength, calculate the corresponding grating period 

required for quasi phase matching and make a device with that particular period, that  

device will work perfectly at the chosen frequency at which you have designed the 

substrate. 

So, at 800 nanometers if you calculate the period and make a periodic domain periodic 

reversal of sign of d at the period corresponding to 800 nanometers, it will work 

perfectly at 800 nanometers. Now, if you change this input wavelength, the period that 

you have in your crystal does not correspond to the period required for the new 

wavelength. In this case, what will happen is the efficiency will drop down, because this 

capital K corresponding to what you have made in the crystal, does not correspond to 

what is required to quasi phase match the new frequency. 
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So, this is the frequency dependent period here; so for any particular input frequency, if 

you want to generate second harmonic, you need to calculate the corresponding quasi 

phase matching period and make a device with that period and of course, as you will 

notice that this will have a certain bandwidth, which means that if your frequency 

deviates from the chosen frequency at the input, then the efficiency will drop down. I 

will come back to this point a little later. 

Now what happens is to create a sinusoidally varying d coefficient is not very easy, 

because remember, materials have a certain non-linear coefficient and how do I make it 

sinusoidally varying along the propagation direction? 
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So, what is done? Now, instead of having a sinusoidally variation in d, I choose a 

periodic variation in d periodic variation in d, and actually I can have crystals with d 

positive and negative. Remember, d is the one of the elements of the non-linear tensor, 

the sign of the d coefficient depends on the orientation of the axis; so you can actually 

change the sign of d by changing the orientation to crystal axis. 

So, it is possible to have d variation, which is either plus or minus, and so let me consider 

a situation where I have, if I plot d verses z, let me assume I have a variation like this. 

So, this is plus d and this is minus d; this is the period and this is length l. So, in one 

period, I have positive value of d over a length l, and over a length lambda minus l, I 

have a negative value of d. So, d of z is plus d 0 for mod z less than l by 2 and is equal to 

minus d 0 for l by 2 less than mod z less than lambda by 2. 

That’s the periodic function periodic function with a period capital lambda and this ratio 

l by lambda is called the duty cycle. So, overall length l, the non-linear coefficient is 

positive and overall length lambda minus l, the non-linear coefficient is negative and the 

function is periodic. 
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So, d of z plus lambda is equal to d of z. Now, because it is a periodic function, I can 

always make a Fourier series expansion. So, if I want to write a Fourier series expansion, 

I can write d of z as d zero sigma g m exponential i m k z. 
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This is a periodic function with a fundamental period capital lambda and so fundamental 

spatial frequency 2 pi by capital lambda. So, when I make a Fourier series expansion of 

this d as a function of z, I leave it as a problem to you; that you can actually show that 



this is d 0 sigma g m exponential i m k z with m going from minus infinity to plus 

infinity. 

This is an exponential Fourier series; instead of, writing sin and cosine Fourier series, I 

am using an exponential Fourier series and what I would like you to do is, take this 

periodic function and calculate the Fourier coefficient G m, and I would like you to show 

that G m is equal to 2 by m pi sin m pi l by lambda. These are the Fourier coefficients 

corresponding to various values of m. So, actually d of z can be written as d 0 times G 0 

plus G 1 exponential i k z plus G minus 1 exponential minus i minus i k z plus G 2 

exponential 2 i k z plus G minus 2 exponential minus 2 i k z plus G 3, and so on. 

These are the various Fourier terms in the expansion and the various coefficients- Fourier 

coefficients are given by the value of G m which is written here. So and of course this 

depends on the duty cycle small l by capital lambda. So, if you take for example, a duty 

cycle of half that means over a length capital lambda by 2, I have a positive value of d 

and over a length lambda by 2; again, I have a negative value of d. 

So, duty cycle of 50 percent, which means half the half the period of the non-linear 

coefficient is positive; the other half it is negative with the same magnitude. Then what 

you can see here is, from here G 1 is equal to 2 by pi, G minus 1 is minus 2 by pi, what is 

the value of G 2? Note, if l by lambda is half, G 2 will have a sign pi term that will be 0; 

so G 2 is 0; G minus 2 is 0. In fact, you can show that all even series - even terms in the 

expansion are 0, giving you only the odd terms in the expansion. 

Similarly, G 3 will be 2 by 3 pi sin sin 3 pi 3 pi by 2 which is minus 2 by 3 pi, and so on. 

So, you can have you can find out all the expansion coefficients in Fourier series; so 

please do derive this equation here, find out what are the Fourier terms in the expansion. 

So, instead of having a periodic sinusoidal variation in the non-linear coefficient, we 

have a periodic variation and that periodic variation can be written as a Fourier series and 

this series contains many exponential terms here. 
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So, let see what happens to this expansion; so let me write again the equation for E 2, d E 

2 by d z is i omega d by c n 2 E 1 square. Now, d i is you need to substitute here; so d is 

a function of z exponential minus i delta k z, which I write as i omega by c n 2 d 0 E 1 

square sigma G m exponential i m K minus delta k z. 

So, if I want to write the first few terms, so I have omega d 0 by c n 2 E 1 square into G 0 

plus G 1 E to the power i K minus delta k z plus G minus 1 exponential minus i K plus 

delta k z plus G 2 e to the power i 2 K minus delta k z plus 1 G minus 2 e to the power 

minus i 2 K plus delta k z, and so on. 

Now, I can integrate this equation sorry there is a exponential minus i delta k z here; G 0 

there is no exponential i k z here, I still have an exponential minus i delta k z. So, I can 

actually integrating this equation assuming again like we did before, that the change in 

the energy of the fundamental frequency omega is negligibly small, which means the 

efficiency small, and that case I can assume E 1 square to be a constant and I can 

immediately integrate this equation you get the following expression. 
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So, E 2 of z is equal to i omega d 0 by c n 2 E 1 square. So, let me now skip a few steps; 

I can actually integrate, and from 0 to z and what you will get is G 0 exponential minus i 

delta k z by 2 into sin delta k z by 2 by delta k by 2. I have integrated and simplified 

exactly like we did before plus I will have G 1 exponential i k minus delta k z by 2 sin K 

minus delta k z by 2 by k minus delta k by 2 plus G minus 1 minus i K plus delta k z by 2 

into sin K plus delta k z by 2 by K plus delta k by 2, and so on. 

So, I can actually first integrate this equation, because if I assume E 1 square is a 

constant, then the only term I need to integrate are these terms here and I get this sin 

delta k z by 2 by delta k by 2, and so on. Now, what can I do is, in quasi phase matching 

what I try to do is, I choose a value of capital K such that one of these sin terms one of 

these terms becomes just disappears from here; which means for example, if I choose 

capital K is equal to delta k, then this term will give me… what will be the value of this 

term? When capital K is equal to delta k, this will be z; this factor remember, here it is 

sin del k minus delta k z by 2 by k minus delta k by 2. So, if I multiply and divide by z 

this becomes a sync function and at 0 argument, the sync function is 1 and I get z. 
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But all the other terms will still have a finite sin term setting here, and so I can neglect 

the contribution for of all the other terms and what I will be left with is E 2 of z will be 

approximately given by… If I can neglect all the other terms and if I choose capital K is 

equal to delta k, I will have i omega by c n 2 d naught G 1 E 1 square into exponential i. 

So, k is equal to delta k; so this goes off and I have simply z plus the other terms, which 

are neglected. So, note here, that the expression that I get is very similar to the situation 

when delta k was 0. Except that, now, the non-linear coefficient, instead of being d 0 is 

now,  d 0 times G 1, where G 1 is the Fourier amplitude of the exponential i delta k in the 

i k z term. The first Fourier expansion coefficient and it is proportional to length here; so 

as the length increases, as I showed you before, the second harmonic field will keep on 

increasing. 



(Refer Slide Time: 21:48) 

 

This is exactly what the thing shown here; it just keep on increasing, because of quasi 

phase matching. Remember, if there was perfect phase matching this should have gone 

like this. 
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It would I mean continuously increasing, but it is increasing much slowly because the 

effective non-linear coefficient now becomes d 0 times G 1. So, if you choose the first 

this capital K is equal to delta k, G 1 is equal to 2 by pi; so the effective non-linear 

coefficients becomes 2 by pi d 0. And if I can neglect other terms what you can see that 



the second harmonic field now grows with z and I will have much higher efficiencies, 

than if I did not have phase matching or if I did not have quasi they phase matching. 
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So, by choosing capital K is equal to delta k what I am essentially doing is, making one 

of these sin terms… give me z here, instead of an oscillatory solution and my second 

harmonic field grows rather than being oscillatory. Because I am choosing the first 

Fourier coefficient capital K is equal to delta k, this is called first order quasi phase 

matching. 
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So, if I choose k is equal to delta k, this is first order Q P M; if I choose 2 k is equal to 

delta k, this is called second order Q P M, and if I choose 3 k is equal to delta k, it is 

called third order Q P M. So, what I have calculated is, for a first order Q P M, if you 

took if you took a second order Q P M, I will have d 0 times G 2 here; if I choose a third 

order Q P M, I will have d 0 times G 3 here. 
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Now, please note that as you go to higher Fourier coefficients, the amplitude of the 

Fourier term keeps on dropping down. Because I have just calculated G m is 2 by m pi 

sin m pi l by lambda, and if you have a larger values of m, you have an increasing 

denominator here; so G 1 is 2 by pi, G 3 is 2 by 3 pi, G 5 is 2 by 5 pi, and so on. 
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But what is advantage of going to higher order Q P M? So, for example, if I were to use 

first order Q P M, I need to choose k is equal to delta k, which is equal to k is equal to 2 

pi by lambda; so the period required is 2 pi by delta k. And what is pi by delta k? pi by 

delta k is the coherence length; so this is twice L c that is visible from here; that I need to 

have the period to be twice L c. 

 I need to change sine of the d coefficient after half the coherence length here, and then I 

get quasi phase matching and so if the coherence length 3.3 microns, I need to have a 

periodicity of 6.6 microns. Every 3.3 microns, I need to reverse the direction or change 

the sign of d. If I were to use third order Q P M, then I need 3 k is equal to delta k, which 

is equal to 6 pi by lambda; so lambda is equal to 6 pi by delta k, which is equal to 6 times 

L c. 

I gain in terms of the period required for quasi phase matching. Remember, to fabricate 

this is not so easy; so I need to worry about fabrication problems. So, if I need to reverse 

the sign of d coefficient every 3.3 microns, it is much more difficult than to do at 600 L 

c, which is about 19 microns or so. So, it is much easier to make third order quasi phase 

matching than first order quasi phase matching, but what is it what is the price I pay? 
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You see here, that the non-linear coefficient - effective non-linear coefficient, instead of 

being 2 by pi d 0 for first order Q P M becomes 2 by 3 pi d 0 for third order Q P M. And 

because the efficiency of second harmonic generation depends on the square of the non-

linear coefficients, note that the second harmonic power is proportional to E 2 square, 

and E 2 square is proportional to d 0 G 1 whole square; it is proportional to G 1 square or 

G 3 square, G m square. 

So, if I go to higher order quasi phase matching, the corresponding Fourier coefficients 

have smaller magnitudes and the effective non-linear coefficient will be smaller; and so 

the efficiency will decrease as you go to higher order Q P M. 

So, already if you have perfectly phase matched, the effective non-linear coefficient will 

be d 0. If you have first order Q P M, the effective non-linear coefficient is 2 by pi d 0 

and because the efficiency goes up as G 1 square, it will be 4 by pi square times the 

efficiency, if you had perfect phase matching. And pi square is of the order of 10; so 4 by 

pi square is about 0.4, that is, 40 percent. So, if you have perfect phase matching for 

certain efficiency, if you go to first order Q P M, your efficiency drops on by 40 percent. 

If you go to third order Q P M it becomes another 1 by 9 times smaller, and that means 

another 10 times factor 9 times decrease in in efficiency. And so, of course, it is easier to 

make third order Q P M structures, but the price you pay is in terms of efficiency. 
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Now, I did not talk about G 2, because you note here, that if you choose a duty cycle of 

half; if l by lambda is half, then all even order coefficients are 0; so there is no G 2; so 

there is no G 2. So, in this expansion here, if your duty cycle is half, G 2 is 0; so there is 

no… You may be achieving second order quasi phase matching, but the effective non-

linear coefficient is 0. See you will not generate second harmonic; if you choose a duty 

cycle of half. 



So, I would not want to leave another problem to you; please find out, what is the best 

duty cycle that I must use, so that I am able to use the second order quasi phase matching 

term? So, what should be the value of… If I go back, look at this expansion here, what 

should be the value of l by lambda? 

What should be the value of l by lambda here, so that I can have a finite value of G 2 and 

the maximum G2 that is possible? So, I leave this problem to you, and then 

correspondingly calculate what is the drop in efficiency, if I do second order of Q P M in 

comparison to the phase matched interaction process? 

Now, so, for example, if I were to take the first order Q P M, then I can calculate; I had 

this expression here; let me write it again. So, this is the expression for E 2 of z; so from 

here, I can actually calculate the second harmonic power. 
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So, P 2 of z is equal to n 2 by 2 c mu 0 mod E 2 of z whole square into the area; so this is 

equal to n 2 by 2 c mu 0 omega square by c square n 2 square d 0 square G 1 square E 1 

mod 4 z square. If I do not take exactly delta k is equal to capital K is equal to delta k, I 

will have essentially the term like, instead of, z square I will have sin K minus delta k z 

by 2 by K minus delta k by 2 whole square. 

If k is equal to If capital K is equal to delta k exactly, then this becomes z square; 

otherwise, there is a sine term, which comes here. I can replace E 1 square in terms of 



P1;  remember, the fundamental power is n 1 by 2 c mu 0 mod E 1 square into area. So, I 

can substitute into this equation and calculate the corresponding efficiency of second 

harmonic generation P 2 of z by P 1. P 1 is assumed to be independent of z, because I am 

neglecting the amount of power that goes from the fundamental to second harmonic; I 

am neglecting the changes in E 1 as a function of z. Please remember that, I cannot 

generate second harmonic, unless I will unless I lose power from the fundamental. 

So E 1, if E 2 changes, E 1 has to change, but I am neglecting the change in E 1 to be 

able to different able to integrate the equation; so that I get an expression for efficiency. 

So, you again substitute in terms of P 1 and calculate; so the only difference term perfect 

matching you will see is, instead of, sine delta k z by 2 by delta k by 2 whole square, I 

am getting sine K minus delta k z by 2 by K minus delta k z by 2. 

So, delta k gets replaced by K minus delta k, and the non-linear coefficient gets replaced 

by d 0 times G 1 for first order Q P M. So, I can use this process, quasi phase matching 

to cancel the effects of delta k by an appropriate period of a reversal of the sign of the d 

coefficient. In birefringence phase matching, I needed to have a first medium, which has 

a birefringence; there must be an ordinary wave, there must be an extraordinary wave. 

And the fundamental in second harmonic are to have orthogonal polarization states, but 

here please note, that I am not using any birefringence if there is a finite value of delta k 

between the fundamental and second harmonic. For example, if you have enter the same 

polarization, then it is medium is anisotropic and if they have the same polarization 

Lithium Niobate, let me assume, the omega frequency is extraordinary wave; the 2 

omega frequency in an extraordinary wave; obviously, I cannot have birefringence phase 

matching, because the extraordinary refractive index at omega and the extraordinary 

refractive index at 2 omega are not equal. 

So, delta k is not equal to 0, but if I can change the sign of capital as small d periodically 

with a period capital lambda having a spatial frequency capital K, then if which is equal 

to delta k, then I will have this for becoming z square and have a very good efficiency. 
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So that is the advantage of quasi phase matching; that I do not depend on the 

birefringence of the crystal and I can actually have a crystal, which is isotropic or in an 

isotropic medium, I can have interaction from omega to 2 omega for waves having the 

same polarization states and so on. 

So that is the advantage of Q P M and this is now, a very standard technique for most 

third order non-linear processes. Now, I want to mention to you one thing, that suppose, I 

were to choose first order Q P M. 
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So, K is equal to 2 pi by lambda is equal to delta k; so this is equal to 2 omega by c n of 

2 omega minus n of omega. So, the period required is pi c by omega into n of 2 omega 

minus n of omega. So, as I mentioned to you before, the spatial period required for quasi 

phase matching depends on the fundamental frequency. 

So, if I take crystal and if I launch certain omega, the sign reversal of d positive negative, 

positive negative depends on the frequency. If I vary the input frequency slightly the 

required period is different from the period that exists in the medium and the efficiency 

will drop down. 

So, in fact if you were to plot the efficiency as the function of frequency, what you will 

get is a curve like this; this is the frequency omega 0 for which you have chosen the 

capital lambda, and as certain frequency separated from here by delta omega, assuming 

delta omega much less than omega 0, deficiency will drop to 0. 

(Refer Slide Time: 29:43) 

 

In fact, you can look at this equation and tell me what is the value of delta k at which 

deficiency will drop to 0? Deficiency will drop to 0, when the sine function becomes 0 

that is K minus delta k into… If the crystal length is l, K minus delta k into l by 2 is 

equal to pi; so I can immediately calculate. 
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So, when K minus delta k into L by 2 is equal to pi deficiency becomes 0, and that means 

delta k is equal to K minus, actually plus minus pi; so delta k is equal to K plus or minus 

2 pi by L. 
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And this K, delta k is the function of omega; please note that delta k is a function of 

omega. So, in this curve what I have drawn here is, this is the frequency at which I have 

designed my quasi phase matching period for which capital K is equal to delta k. 



As I move away from here, delta k changes and when delta k becomes k of plus minus 2 

pi by L, the corresponding efficiency becomes 0. So, I can man-width of this interaction 

process, which is approximately delta omega over which the second harmonic, this quasi 

phase matching crystal will work efficiently. 

So, if you were to deviate your input frequency by more than of the order delta omega, 

then the efficiencies of second harmonic generation will become very poor. The longer 

the crystal, the narrower is the bandwidth of second harmonic interaction process. So, if 

you take a long crystal with the domain reversed crystal, then the bandwidth is much 

narrower than if you have a shorter crystal. 
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So, again, what I would like you to do is, please note that, let me give you a problem. 

The problem is at omega is equal to omega 0, delta k of omega 0 is equal to K; this is 

equal to 2 pi by lambda. At omega is equal to omega 0 plus delta omega delta k of 

omega is equal to K plus minus 2 pi by L plus or minus you find out. 

So, if delta omega is much less than omega 0; from this expression here, you can write 

delta k of omega is equal to delta k of omega 0 plus delta omega. Make a Taylor series 

expansion, use this equation here and calculate delta omega, an expression for delta 

omega. What is the bandwidth of the interaction process in terms of the refractive indices 

or in terms of whatever it is? 



So, I will leave it as a problem to you to calculate, what is the bandwidth of this 

interaction process how does in terms of frequency delta omega or delta lambda? So, this 

is important in a practical device, because I need to know, how precisely I need to 

control the frequency of the input laser, so that I keep having high efficiency second 

harmonic generation. 
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Now, obviously, the question arises, how do I change the sign of d? Now, there is a 

standard procedure now, which is employed. So, let me take an example of Lithium 

Niobate Linbo3, this crystal is a ferroelectric crystal; so it has a spontaneous polarization. 

And for example, let me call this as z axis of the crystal; so x may be here, y may be 

here; so these are the three principle axis of a crystal x y z. It is a uniaxial crystal; so the 

optic axis is along the z axis and what happens in this crystal is, there is a spontaneous 

polarization, that is, take that is there along the z axis. 

Now, what I can do is, if we apply very strong electric field in the reverse direction, 

suppose, I apply a strong electric field in the downward direction, I can actually reverse 

the direction of the z axis by flipping the atoms within the crystal. And what happens is 

for example, if I take this half of the crystal and if I apply very strong electric field in the 

downward direction, then I can change the orientation z axis from pointing up to pointing 

down. 



It is just like in magnets; you have north pole, south pole and you can flip it out into 

make it south pole, north pole by applying a very strong magnetic field in the reverse 

direction. So, you can actually change the orientation of the spontaneous polarization 

direction by applying a very strong electric field in the opposite direction. 

So, one of the techniques, it is called the electric field poling. So, what you do is, you 

apply; you put in periodic electrodes. So, this is a crystal having say z axis like with 

originally; so you apply; you connect all this and apply electric field in the downward 

direction; when you apply a strong enough electric field, what happens is the optic axis 

in this position reverses its direction. 

So, here, there is a strong electric field in the downward direction, which changes the z 

axis from pointing up to pointing down. And similarly, here, again there is a strong 

electric field from pointing up to pointing down and this is the period of domain 

reversible. 

So, this is called periodic poling, that means you are poling the crystal orientation 

periodically and so this is are called periodically poled crystals. And in fact, this is called 

periodically poled Lithium Niobate; if it is the Lithium Niobate also called in short form 

as (( )) that means these are Lithium Niobate crystal in which the direction of the 

spontaneous polarization is periodically reversing in the crystal. But please note, that the 

linear property of the medium is the same along the z direction, along this direction, but 

its optic axis reversing its orientation. 

So, what is the effect of this direction change of optic axis? Again, please note, that the d 

tensor we have written d i j k; it is a tensor and it is written in the principle axis system. 

So, in the principle axis system these coefficients - d coefficients are all written in the 

principle axis system. 
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So, if I were to consider a crystal with 2 parts, for example, in one part let me assume the 

z axis was here; this is x and this is y, and in the other part, I had z like this, y like this 

and x like this; I have changed the direction of z, I have to keep the right handed 

coordinate system. So, in this coordinate system here, the d tensor, which I have written 

is valid in this coordinate system; the d tensor, which I have written is also valid; 

provided, I choose this coordinate axis. But please note, that the equation which I am 

writing are in a laboratory coordinate system. So, they could be like this for example, 

this could be x y z. 

Let me call this as capital Z, capital X, Capital Y; this is the principle axis system; this is 

the laboratory coordinate system. So in this part of the  crystal, the laboratory coordinate 

system and the crystal principle axis exactly match; so the d tensor written in the 

principle axis system is also the d tensor in the laboratory coordinate system. In the 

second part of the crystal, the laboratory coordinate system and the principle axis system 

do not coincide. The d tensor is written in the principle axis system; so I need to 

transform the d tensor from the principle axis system to the laboratory coordinate system. 

So, what do I?  I use the transformation properties of tensors. 

Note that, between these two, all I have done is to change x to minus x, z to minus z and 

keep y the same; so this system and this system are related through x to minus x and z to 

minus z and y to plus y. 



So, I leave it as a problem to you that please calculate, when you rotate the principle axis 

system around the y axis by 180 degrees, which are the elements of the d tensors, which 

change sign; which are the elements of the d tensor, which do not change sign. That 

means I need to write the d tensor of this part of the crystal in the laboratory coordinate 

system and compare that with the d tensor of this half, and you will find you may find 

that some of the tensor elements do not change sign; some of them would have changed 

sign. So, those elements which have changed sign, I can use them for quasi phase 

matching; if the particular non-linear coefficient does not change sign obviously, I 

cannot use that for quasi phase matching. 

Please go back and look at your earlier notes on tensor analysis; find out, how to 

transform tensors it is very simple; it is not a general angle, it is just x to minus x, z to 

minus z, y to plus y. And so, you can actually use this transformation properties of 

tensors to find out, which d i j k elements here are negative of here, and which d i j k 

elements do not change sign. And you will see for example, d 3 3 is the largest non-

linear coefficient Lithium Niobate and that changes sign. So, you can actually use d 3 3 

for quasi phase matching. 

So, please go back and do. In case, you have a problem; we can discuss that in the class 

and analyze this little more carefully. Do you have any questions in quasi phase 

matching? So, let me let me just recollect what you have done in the equation for second 

harmonic. There is an exponential minus I delta k z, when I integrate over length, this 

exponential factor gives me an oscillatory solution and to remove this oscillatory 

solution, I must make delta k is equal to 0. If I choose delta k is equal to 0 the second 

harmonic power grows quadratically with length and I have very high efficiencies. 
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And the way to achieve this is called birefringence phase matching. Now, the problem 

with birefringence phase matching is, I need… the crystal has to be anisotropic, and the 

polarization states of the omega and 2 omega are orthogonal to each other, which means 

there are some d elements - some d tensor elements, which are responsible for this 

interaction and they may not be the largest. 

So, to overcome this problem we have discussed quasi phase matching in which I do not 

take a crystal with a uniform d value, but I periodically reverse the sign of d, the non-

linear coefficient. By doing that I can use this periodic variation in d to cancel the effects 

of exponential minus i delta k z, and I can achieve quasi phase matching. And then I do 

not have to have a birefringence crystal; I can use the same polarization state for omega 

2 omega and achieve  very good conversion efficiency. 

So, the period required for this quasi phase matching depends on the frequency of which 

you want to do second harmonic generation, and it also depends on the refractive indices 

of the medium at omega and 2 omega. 

You can do first order quasi phase matching; you can do third order quasi phase 

matching, and so on. And of course, you pay a price compared to perfect phase matching 

and the price is in terms of efficiencies. Because there is an effective non-linear 

coefficient now, which is less because of the Fourier expansion term and so you have a 



dropped efficiency. So, if you take a 50 percent duty cycle, I showed you that the drop in 

efficiency is about 40 percent. And so, but you can still have phase matching and may be 

you can use actually you can use higher non-linear coefficient of the d tensor to achieve 

increased efficiencies, and this is now, the standard technique, which is conventionally 

used for most of the chi two processes. 
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Now, if there are no questions, what we would like to next do is, to look at exact 

solutions of the problem. Remember, we have solved the equation for E 2 by assuming 

that the conversion from omega to 2 omega is of low efficiency, which means that I have 

assumed that E 1 as constant, when I integrated this equation either in perfect phase 

matching either with no phase quasi phase matching or with quasi phase matching. 

And so that expression, which I get can be used only for low efficiencies, may be 5 

percent, may be 8 percent, but what will happen if my efficiency becomes larger? I 

cannot use those solutions; so we need to look for solutions and what I will like to do is, 

to look at the solutions for a perfect phase match situation and get exact solutions to the 

coupled equation problem. 
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So, let be recall the 2 equation; so d E 1 by d z is equal to i omega d by c n 1 E 2 E 1 star 

and d E 2 by d z is equal to i omega d by c n 2 E 1 square. I am assuming delta k is equal 

to 0. What we did was we solved this equations assuming E 1 is a constant; actually 

including the phase mismatched term and we got a solution. 

Now, I want to solve these 2 coupled equations and not to make this approximation of 

neglecting variation E 1. So, let me give you a few steps here and we will go to the 

complete solution in the next class. So, what I do is please note that E 1 and E 2 are the 

complex dielectric fields. 

So, let me write E 1 of z is equal to u 1 of z exponential i phi 1 of z E 2 of z is equal to u 

2 of z exponential i phi 2 of z; u 1, u 2, phi 1, phi 2 are all real terms. So that is the 

amplitude of the electric field; that is the phase of the electric field, the amplitude of the 

second harmonic, the phase of the second harmonic. 

So, I want to substitute this into this equation. So, for example, let me calculate d E 1 by 

d z is equal to d u 1 by d z E to the power i phi 1 plus i d phi 1 by d z u 1 E to the power i 

phi 1, which is equal to i omega d by c n 1 E 2 E 1 star. So, u 2 E to the power i phi 2 

into E 1 star, which is u 1 E to the power i phi 1; I am substituting this into this equation; 

so E 1 d E 1 by d z is equal to i omega d by c n 1 E 2 into E 1 star. 
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So, if I take exponential i phi 1 on the other side, what I will get is d u 1 by d z plus i d 

phi 1 by d z into u 1 is equal to i omega d by c n 1 u 1 u 2 exponential i theta of z; let be 

call this, but theta of z is phi 2 minus 2 phi 1. 

Now, I can equate the real and imaginary parts on both sides and I can get 2 equations; 

so d u 1 by d z is the real part; so I have minus omega d by c n 1 u 1 u 2 sin theta of z and 

d phi 1 by d z is equal to into u 1 omega d by c n 1 u 1 u 2 cos theta of z. 

So, what I have done is, I have written the electric field as a product of the amplitude 

term and a phase term here; substitute it into this equation and this one equation here, 

gets replaced by 2 equations here; similarly, I can substitute for E 2 and E 1 in the second 

equation and I get two more equation. 

So, let me write those two equations; please check it yourself d u 2 by d z is equal to 

minus omega d by c n 2 u 1 square sin theta of z, and u 2 d phi 2 by d z is equal to omega 

d by c n 2 u 1 square cos theta of z. 

Four equations instead of,  2 complex coupled equations, I have 4 coupled equations; 

now, all real equations here in terms of u 1, u 2, phi 1 and phi 2 and how they vary with 

z? 



So, what we will do in the next class is to solve these 4 equations and get the solutions 

and I will show you that I can get the exact solution of these equations; these are under 

phase matching conditions only. 

So, effectively what you will analyze is, here is my crystal delta k is equal to 0 and I 

have a frequency omega incident here with amplitude u 1 and with a phase phi 1, what is 

it that is get, what is the u 2 here that is getting generated? So, this is the frequency 2 

omega that comes out. So, we will be able to obtain a solution to the second harmonic 

exact solutions under phase matching conditions. 
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And later on I am going to use the same set of equations for the reverse problem of 

generating omega from 2 omega, actually this problem, where instead of going from 

omega to 2 omega, I go from 2 omega to omega. 
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This is called the parametric amplification and I will use the same set of equations, and 

these equations are very interesting, because they give me a complete analytical solution 

to the problem of second harmonic generation under phase matched operation condition. 

Do you have any questions? So, what we will do next class is to solve these equations 

and get complete solutions. 

Thank you very much. 


