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Today, I would like to discuss the propagation of electromagnetic waves in 

inhomogeneous plasmas. Well, I will discuss a few cases where plasmas with gentle 

density gradient are found, and then discuss the propagation of waves on the basis of 

WKB solution. And then I will consider the case of oblique propagation of an 

electromagnetic wave to a density gradient in a plasma, and finally I like to discuss the 

application of this analysis to a technique called ionosonde to determine the electron 

density profile in the earth ionosphere. 



(Refer Slide Time: 01:13) 

 

The reference for today’s presentation is the book electromagnetic theory for 

telecommunications, that professor C S Liu, and myself wrote and published by 

Cambridge university press. 
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Well, let me cite a few example where realistic plasmas are of inhomogeneous density 

variation, for instance ionosphere look at the earth ionosphere earth ionosphere is the 

region of earth atmosphere which is ionized. So, if you take earth like this then the 

ionosphere starts at a height typically about 90 kilometers but, the density suddenly does 



not change from zero in the atmosphere to finite value in the ionosphere, it gradually 

builds up rather the density increases as you go up so electron density end increases with 

height its nearly zero at the boundary and as you moves up it increases. 

So, if you want to launch an electromagnetic wave from the ground based transmitter, 

the wave will penetrate into the ionosphere but, the ionosphere is not of constant density 

but, of gradual density variation, so this is a typical example of inhomogeneous plasma. 

Currently there is lot of interest in laser interaction with targets for instance consider a 

thin metal foil, if you launch a laser beam on the metal foil and the metal foil and the 

laser intensity is large, the laser penetrates just a little in the material but, it can convert 

this into a plasma and plasma expands in time. So, after a little while of onset of the 

laser, if you examine the density variation of or the character of plasma that is formed 

outside this is called a plasma plume. 

The plasma is created at this boundary here and this is expanding outside, so if you look 

at this plasma plume, the density here is the minimum and as you move into the plume 

the density increases, so this is another example of gradual density variation. Third 

example which is of current interest is, what we call as laser, this is the example of a foil; 

metal foil and then there is an example of laser gas jet interaction. what you do in laser 

gas jet interaction? 
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You have a container that has a gas at a high pressure and there is a small nozzle in here, 

through which the gas comes out, the gas forms sort of a plume here like this and you 

will shine a very high power laser into this gas then it forms a plasma here, in the region 

through which the laser propagates. If you look at the density in the plasma as you move 

from one end to the other end, the density varies at the edge here density variation is 

rather rapid but, then it becomes quite uniform then falls off. but its not that rapid it 

increases in several wave lengths. So, I can still treat the plasma boundary to be a diffuse 

boundary rather than a sharp boundary. 

So this is another example, where density variation is important in many cases the 

density variation can be taken be linear, so we say that the density variation profile is 

linear n profile like density can vary like n is equal to n 0 z upon L n means If I plot a 

density on the y axis electron density and z is that distance from the plasma boundary 

this I have written for z bigger than 0 and this is 0 for z less than 0. 

So, if you have this kind of profile then the density if you plot this as a function of z will 

be a straight line like this in some cases you may have exponential density profile, where 

density varies as some constant n 0 exponential of z upon L n some constant L n minus 1 

in that case the density will vary little more rapidly like this. So this is called exponential 

density profile, this is called linear density profile, this is exponential both kind of 

profiles are observed in realistic laboratory plasmas and as well as in space plasmas. 

(Refer Slide Time: 07:36) 

 



Another important density variation that occurs especially in laser plasma interaction is 

called a parabolic profile, what you have for instance you have gas jet target and (( )) 

laser here like this. This is the laser intensity variation, so when the laser travels through 

a gas jet it produces a plasma on the axis of the laser, whose density increases in this 

direction as well as in this direction this is say z axis and so I am considering a 

coordinate system where x axis is here and z axis is there. 

So, in this situation density can vary with x and the profile usually that one considers say 

of this form density is minimum on the axis laser axis and it increases with x like 1 plus 

x square upon some constant L n square, n 0 is the density on the laser axis really what 

happens that when the laser propagates through a plasma its intensity being largest on the 

axis and less outside it exerts a radiation pressure force on the electrons in these 

directions and the electrons move out, sometimes they can carry the ions also along with 

them. 

So there is a reduction in plasma density on the axis, so this is called a parabolic density 

profile. And this has been found to be very suitable for guiding the laser. So, this is a 

important problem in plasma physics to examine the propagation of laser in 

inhomogeneous plasma. 

Before, I go into discussing the wave theory of wave propagation, let me tell you 

something regarding the qualitative aspects or physical aspects of what do you expect 

really in such situations. What you can consider is to be simple, consider a general 

density variation with z for instance, what you can do? You can think as if suppose this 

is my z equal to 0 plane from where the plasma begins this is free space here and the 

density is increasing for instance with z. 

What you can do? Mathematically you can divide this plasma into many layers of 

increasing density but, in each layer the density is constant, you know the refractive 

index of a plasma is eta which is 1 minus omega p square upon omega square to the 

power half omega p depends on electron density. 

So when density changes from place to place omega p also increases, as you z increases 

as a result eta decreases. So if you are launching a wave in free space from here, at some 

angle for instance then this ray as it goes from a rarer medium optically rarer medium to 



a denser medium sorry optically denser medium to optically rarer medium, because 

plasma is a rarer medium having refractive index less than 1. 

So this will move away from the normal, I may draw this like this it will move towards 

this strikes the boundary between this layer and this layer again this will move further 

away from here so it may go like this. So the ray bends away from the normal as it goes 

from one medium to another medium this is what you physically expect, well one thing 

is very important in here and that is called the Snell’s law. 
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Which tells that if a ray goes from one medium at an angle theta 1 and then it gets out in 

second medium with angle of transmission equal to theta 2, if the refractive index of 

medium number 1 is eta 1 that of second medium is eta 2 then n 1 sin theta 1 is equal to 

eta 2 sin theta 2 this is Snell’s law, to which if you multiply omega by c, where omega is 

the frequency of the light of the e m wave that you are launching. 

So then omega by c you multiplied here and multiply omega by c here you know the 

product of omega by c into refractive index is called k. So this equation is equivalent to 

saying that k 1 sin theta 1 is equal to k 2 sin theta 2, what is k 1? I am considering a 

situation where density is changing in z and plasma is uniform in the x direction. 

So what you are seeing here, that k 1 into sin theta 1 is the component of k vector of the 

wave along the interface or perpendicular to z axis. So I can call this is as k 1 x is equal 



to k 2 x. Similarly, if you apply the same Snell’s law at the boundary between second 

layer and third layer this will be equal to k 3 x and so on means as an electromagnetic 

wave moves from 1 medium to another medium this k 1 x, k 2 x, k 3 x will remain same. 

So, I can call them as a simply k x how about k z in any in any layer, so in any layer 

suppose the refractive index is eta z then total k is omega by c into eta z, so total k is 

decreasing as eta decreases with increasing density but, k x remains constant in order to 

have k vary k z must change. 
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So what you really have, because k x square plus k z square is equal to k square which is 

equal to omega square by c square into refractive index square this equation tells me that 

k z square in any region, will be equal to omega square by c square eta square minus k x 

square this is a constant omega is a constant, eta is the decreasing function of z if the 

plasma density is increasing function of z so k z will decrease. 

So, what you are having? If your medium begins at this point and if you are launching a 

ray here like this, the ray as it travels into a plasma of increasing density ray will bend 

like this and eventually will get out like this this is the direction of ray that we expect the 

issue is that at somewhere k z will become 0, whenever k x becomes equal to omega by c 

eta then k z becomes 0, so the point is called turning point where k z becomes 0, the 

wave vector travels in the x direction at this point. This remember this is my z direction 



this is my x direction. So at the turning point this is called turning point, I will call this z 

is equal to z t turning point. 

K z is 0 which means eta becomes c upon omega into k x, if the wave is coming from 

free space this is free space at an angle of incidence is theta i then k x can be written as 

omega by c sin theta i because the magnitude of k vector in free space is omega by c, if 

the angle of incidence is theta i then the component of this k vector along x direction will 

be omega by c into sin theta i. So eta becomes is equal to sin theta i at the turning point. 
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What is the consequence of this, what is eta? A refractive index of a plasma is eta is 

equal to 1 minus omega p square by omega square under root and I am saying put this is 

equal to sin theta i. If, you solve this equation it gives you at the turning point plasma 

frequency is equal to omega Cos theta i. 

If, theta i is large then this quantity will be smaller, so at large angle of incidence this is 

my boundary between free space and plasma and the rate trajectory is like this. And If I 

had a higher angle of incidence like this then this ray will come back early, this is the 

first ray, this is the second ray, the first ray was coming at a small angle of incidence this 

is angle of incidence, the second ray was coming at a large angle of incidence so it 

travels only a little in the plasma it comes out. 



So this is a important consequence of physical consideration of the or application of 

Snell’s law in the propagation of waves in a inhomogeneous plasma. Well one thing I 

would like to mention in here, that if you want to determine the rate trajectory the 

equation of that trajectory of the ray can also be deduced on physical grounds what you 

except that a ray is travelling in a medium actually travels in the direction of propagation 

I will call the direction of propagation is n vector, this is the direction of propagation 

which is the same thing as k vector upon magnitude of k this is called the unit vector in 

the direction of wave propagation. 

Here, so far we have discussed the propagation of waves with velocity v p phase velocity 

we have not talked about group velocity, probably we will discuss it today or some other 

time the concept of group velocity. But, what really happens if you launch a wave into a 

plasma and the wave amplitude is limited in time it is not a continuous wave. 
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If you launch a pulse, then you can write down the wave field at the entry point as some 

function of time and exponential minus i omega t then later when this wave propagates 

through a plasma then the phase changes with z it is amplitude also changes with z, the 

velocity of amplitude propagation is called group velocity. So we denote this quantity 

called v g velocity of amplitude propagation, where as the velocity of phase propagation 

is called v p velocity of phase propagation. 



There is a relationship between the 2 v p is denoted as omega by k and v g will be shown 

to be equal to delta omega by delta k it is a vector sign put there and vector sign there. v 

g has three components v g x, v g y, v g z delta omega by delta k x is called v g x, delta 

omega by delta k y is called v g y, delta omega by delta k z is called v g z. In a isotropic 

plasma omega does not depend on direction of k depends only on magnitude of k, so in 

that case this becomes is equal to delta omega by delta k is scalar into delta k vector delta 

k scale upon delta k vector. 
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And if you differentiate k (( )) to k vector, what do you get? Because k is equal to under 

root of k x square plus k y square in general plus k z square, so if you obtain delta k upon 

delta k x, this will be equal to simply k x upon k. Similarly, delta k upon delta k y turns 

out to be equal to k y upon k, and similarly delta k by delta k z you can write. So, what 

happens that the group velocity can be written as delta omega by delta k magnitude into 

k vector upon k, which is n unit vector  the direction of a propagation in a isotropic 

plasma. 

Well, what is the consequence of this? If your ray is travelling like this this is the 

direction of your ray in a plasma, inhomogeneous plasma then suppose I am considering 

the wave propagation in x z plane this is my z direction and this is my x direction. So my 

wave is going in the x z plane, I am excepting that this velocity is in the x z plane also, v 



g has x component and z component also, what happens? I can write down the rate 

trajectory because when ray goes it the point moves from here to here. 

So the distance travelled by the light by the electromagnetic wave in the x direction. I 

will call as d x by d t is equal to v g x the distance travelled by the ray in time d t will be 

d x this will be proportional to velocity put this is equal to delta omega by delta k into k 

x upon k take x component. And similarly, d z by d t is equal to v g z which is equal to 

delta omega by delta k into k z by k. If you divide these two equations you can write 

down d x by d z. 
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And the result would be d x upon d z is equal k x upon k z. please remember I just 

mentioned if the plasma has variation in density along z axis then k x is a constant only k 

z depends on z. So you can easily integrate this equation and you can write down d z into 

k z as a function of z that you know and integrate this is equal to k x is a constant into 

sorry I made a mistake this is inverse k z inverse into d z is equal to k x inverse into d x 

plus a constant of integration. k z let me write down explicitly k z as a function of z is 

equal to omega square by c square refractive index is square as a function of z minus k x 

square under the roo. 

So this equation can be easily integrated and this is called the ray, the equation of the ray. 

So I think based on Snell’s law and physical considerations we have learnt that if we 



know the profile of refractive index variation with position, we can deduce the ray 

equation by integrating this equation. And obviously we have to know the angle of 

incidence because k x depend on depends on the angle of incidence of the ray. well with 

this in production let me go over to discuss the phenomenon of wave propagation in a 

inhomogeneous plasma. 
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I will consider the propagation of wave in one dimension first. In one dimension, what 

you have? That I having a plasma where omega p square depends only on z and my wave 

is also going in the z direction, this is the direction where density is changing or omega p 

is changing, so this is the gradient of n parallel to z and my wave is also going in the 

same direction. 

My electromagnetic wave I can write down, E is equal to some amplitude exponential 

minus i omega t at z equal to 0, say for instance I would like to find out how much the 

field looks at higher values of z, to be specific i because I have already learnt that when a 

wave travels in a plasma then the electromagnetic wave is transverse. So the A vector the 

amplitude has to be either in the y direction or x direction, so without any lose of 

generality I choose my x axis along the amplitude of the wave or A in the direction of x. 

So, I will choose this E for z greater than 0 let me call the initial amplitude to be A 0 and 

let the amplitude afterwards becomes A which is a function of z, I do not know what is 



the x z dependence and time dependence I will take as i omega t. So first let me deduce 

the equation governing A and then under certainly approximations we will solve that 

equation. 
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The relevant Maxwell’s equations are curl of E is equal to minus delta B upon delta t this 

is the third Maxwell equation, because the time variation I have a specified as 

exponential minus i omega t, delta delta t i replace by minus i omega, so it becomes i 

omega mu 0 H. The fourth Maxwell equation is curl of H is equal to J plus delta D by 

delta t again replace delta delta t by minus i omega J by i omega as sigma E. So combine 

these two terms and you will get minus i omega epsilon 0 epsilon effective into E, this is 

how? The Maxwell’s equations resemble a dielectric so this is the effective plasma 

permittivity. 

Now, these two equations can be combined by taking curl of the first equation, so this 

becomes curl of curl of E right hand side becomes i omega mu 0 curl of H for curl of H, I 

use the second equation so the right hand side becomes omega square by c square epsilon 

effective into E and this I can break using vector identity into gradient divergence of E 

minus del square of E. 

The issue is, what is the value of divergence of E? In my particular case because I am 

considering the wave propagation to be along z axis. So, I will choose delta delta z to be 



non zero but, I will choose delta delta x to be 0 and delta delta y to be 0, regarding the 

electric field by incident electric field is in the z x direction, so I want to choose E 

parallel to x axis. 

So, If I take the x component of this equation you know that del operator means delta 

delta x is 0, so this term vanishes means in this particular case of wave propagation along 

the density gradient this term does not contribute at all. So, thus and del square becomes 

how much D to d z square because other derivatives are 0, so then this equation in this 

particular case becomes a differential equation in one variable. 
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And it becomes d to E x d z square plus omega square by c square epsilon effective 

which is a function of z into E x is equal to 0. 

There is no approximation so far but, if epsilon effective is general function of z, a 

general solution of this equation is very difficult, if this quantity varies very gradually 

with z then one can solve this equation in one approximation that I write down E x into a 

terms of two functions; one called amplitude function. So, let me write down this 

quantity say A1 some function of z into e to the power some i another quantity phi some 

function of z, where A1 is purely real and phi is purely real. I can call actually there is no 

need to put may be subscript one here but, does not matter. 



So if this is the kind of dependence no approximation, I am just writing any complex 

quantity E x can be written as some amplitude which depends on z and some phase term 

but, from over a plane wave solution and a homogeneous medium we know amplitude is 

a constant this is a rapidly varying function of z as exponential of i k z. 

So, here I am saying that when the plasma is inhomogeneous a still main z dependence 

comes through phi and v z dependence comes through the amplitude. So I am going to 

assume that delta A 1 by delta z is small is much less than delta phi by delta z, actually I 

should compare this with something so I will call this 1 upon A 1 and this as 1 upon phi. 

I will say that this is a much stronger z dependence than this 1. 

So when I substitute this expression in the wave equation, I will say that first derivative I 

will certainly retain of A1 but, I will ignore the second order derivative of this so I am 

going to neglect d 2 A1 by d z square, this neglect of second order of derivative of A1 

with respect to first order derivative of A1 or second order derivative of phi with respect 

to z is called W K B approximation. So first of all, we will employ this approximation 

and obtain the values of A1 and phi and then justify under what conditions this 

assumption is justified. 
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So, let me substitute this if E x, I am choosing is equal to a let me call A1 a function of z 

exponential of i phi then differentiate with respect to z obviously there is a time 



dependence is also there minus i omega t is already there. So delta E x by delta z will be 

how much this will be equal to delta A1 by delta z into this entire function plus i delta 

phi by delta z into exponential minus i omega t into exponential of i phi this is one 

derivative. 

Second order derivative would be d 2 E x by delta z square is equal to d 2 A1 by d z 

square, which I am going to ignore in little while plus if you differentiate this you will 

get I, d 2 phi by d z square there is A1 here also, I forgot this write A1 here please write 

A1 there into A1 plus I will get i delta phi by delta z into delta A1 by delta z. 

Then you start differentiating the exponential term, so you will get i delta phi by delta z 

into this terms so it becomes two times and then you multiply the differential coefficient 

of this with this term, so you will get minus d to phi d z sorry delta phi by delta z whole 

square into A1 multiplied by this exponential terms minus i omega t into exponential i 

phi. And this has to be put equal to in the wave equation minus omega square by c square 

epsilon effective into E x which is equal to this whole expression so A1 exponential of i 

minus i omega t exponential of i phi. 

Now, please remember there are this is a common factor on the right hand side as well as 

on the left hand side this factor is common. So they will cancel out this from here 

through here and from here through here, they just cancel each other on both sides cancel 

them and equate the real part on the left with the real part on the right and imaginary part 

of these terms on the left should be zero, because there is no left imaginary part on the 

right after these exponential have been canceled. 

So what do you get, on equating the real part means this this I am ignoring this is called 

W K B approximations we ignore. So real parts is simply this term equate this term to 

this term and imaginary part is this term plus this term is zero. 
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Let me write this this gives me delta phi by delta z is equal to omega by c epsilon 

effective to the power half. So phi can be easily obtained from this equation, so the phase 

of the wave a special part of the phase is omega by c under root of epsilon effective to 

the power half d z, because we had been calling this quantity as refractive index. I can 

also write this as omega by c refractive index into d z. If, the medium are homogeneous 

this is a constant you can take it out and d z simply becomes z integration, how about the 

this is by equating the real part on the left to the real part on the right. 

When you equate the real imaginary parts, you will get imaginary parts give you d to phi 

by d z square of A plus twice delta phi by delta this is A1 rather actually this A1 

everywhere. I made a mistake this is A1 into delta phi by delta z into delta A1 by delta z 

is equal 0, because there is no imaginary term on the right hand side these two equations 

can be combined into one, If I multiply both terms by a quantity called A1. 

So, let me multiply this by A1, so If I multiply this by A1 this becomes A1 square and 

A1 i multiply here but, this 2 A1 into d A1 by d z becomes d 2 A square by d z and this 

can be written simply as delta delta z of A1 square delta phi by delta z is equal to 0, you 

can just check it, which means this is a constant term? 



A1 square delta phi by delta z is equal to constant, let me put the value of delta phi by 

delta z from this expression here its omega by c into epsilon effective to the power half, 

which simply says that because omega by c is a constant. 
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So this equation tells you that as the waves travels A1 square into epsilon effective to the 

power half is equal to constant. Initially, if the wave started from free space I will call 

this quantity initial amplitude of the was A 0 and epsilon effective was unity in free 

space. 

So this is square A 0 square for A1 and this what you get? So what you are getting here 

the A1 amplitude of the wave in the medium is initial amplitude A 0 divided by epsilon 

effective to the power one-fourth or A 0 upon refractive index to the power 1 by 2. 

This expression can be physically understood, if you recall that as the that in a plasma, 

the time average pointing vector which is called intensity of the wave was equal to 

modulus of E square upon twice mu 0 c into refractive index. So, what is happening 

here? As E if you put the value of E it becomes simply A1 square, so it becomes A 0 

square upon eta will cancel out because 1 upon eta will be from here ,and eta will cancel 

upon twice mu 0 c. 

So, what is happening? If you are launching a wave into a plasma whose density is zero 

here, and density increasing in the interior then what you are excepting that the wave 



amplitude after all total power of the wave if reflection is ignored passing through any 

unit area should remain constant. after all whatever electromagnetic energy is entering 

here must pass through here must pass through here must pass through here everywhere 

it must pass. 

So, if there is no absorption as we are ignoring absorption here by taking eta to be real as 

the wave travels its energy crossing should remain same. So, if this has to remain 

constant but, eta is decreasing as the plasma density is increasing the refractive index 

decreases. So, E must increase that is why this amplitude is increasing so just by to 

converse the energy a denominator a refractive index under root comes in the 

denominator this ensure the energy conservation in the medium. So it is a important 

physical interpretation of this dependence. 

(Refer Slide Time: 46:25) 

 

Well, it has a very important implication let me elaborate on this suppose I have a plasma 

whose density I am plotting like this, suppose the density is increasing like this. 

So, If I plot omega p here and plot z here omega omega p square rather. because this is 

proportional to density so this is my density profile written in terms of plasma frequency 

square and suppose at some point omega p becomes is equal to omega, so this point is 

called omega square means at this point. So, if the wave is coming from here it will 

penetrate up to this distance at this point omega p becomes is equal to omega, up to this 



at this point your refractive index becomes zero beyond this refractive index is imaginary 

the wave does not travel. 

So what is happening, If I plot the wave wave amplitude will be like this we have just 

seen, so the if the wave at a given instant of time if you see the oscillator electric field of 

the wave plot it will be like this.  

Actually from W K B theory, when eta goes to zero your amplitude goes to infinity 

because eta to the power half comes in the denominator and there actually this theory 

fails, because the amplitude variation becomes quite rapid so d to a by d z square that we 

had ignored its neglect cannot be justified so theory does not hold but, if you do a little 

more careful calculation then the amplitude is not infinite. But, it is contained but never 

the less as the wave travels, its amplitude becomes larger and larger this is called plasma 

swelling of plasma induced swelling of the wave amplitude.  

Plasma induced wave swelling, I am plotting field at a given instant of time as a function 

of z wave swelling this is a important consequence of W K B theory that wave amplitude 

becomes stronger and stronger as the wave approaches the critical layer where plasma 

frequency equals the wave frequency. 
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Now, a few remarks regarding the oblique propagation for that is called a 2 D 

propagation means, the wave is not traveling in the direction of density gradient but, at 

an angle to density gradient. 

So, I have a plasma where density gradient is like this around z axis for instance but, my 

wave is coming at an angle I am launching a wave like this. So, I would like to find out 

as this wave travels into the medium, how does it its field vary with z. Well, let me 

specify the x axis also, I will choose this as the x axis and this is my z axis and I will 

choose my fields to vary in x and z but, being constant in y this is called two dimensional 

propagation. 

So, I am choosing delta delta y to be 0 but, delta delta x is non zero and delta delta z is 

also non zero but, my properties of a medium the density of the plasma is a function of z 

alone. So from Snell’s law we except that the wave vector of the wave in the x direction 

will not change with distance it will remain the same as it was in the beginning this one 

thing that we can recall from there but, we should be able to deduced the same thing 

from the Maxwell’s equations and we shall do that. 

Another thing that I would like to mention here there are two possibilities that this wave 

may be polarized this wave may be polarized perpendicular to the x z plane means there 

are two possibilities; that the electric field of the wave is parallel to y axis and second 

possibility is the electric field is in the x z plane is in the x z plane there are two 

possibilities let us consider either of the two. For the sake of simplicity, I will consider 

the wave propagation with y axis this polarization is called S polarization and the other 

one is called P polarization plane of incidence polarization. 

So, the issue is if my wave is travelling in with electric field in the y direction like this 

and the medium properties do not change with y, you will just see that the wave will 

maintain its y polarization whereas, if the electric field of the wave is in this direction 

and the wave travels something very different happens what happens lets physically see. 
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When the wave travels in a inhomogeneous medium and it curves like this and if the 

electric field is polarized in the plane of incidence like this then as the ray bends this 

electric field also bends, because it has to remain perpendicular to the direction of 

propagation its bends like this and if this point this becomes like this, so this is case of P 

polarized light. Now, there is a gradual rotation of the electric field of the wave as it 

travels in the medium and as you know from physical considerations that this is a layer 

called turning point, where omega p is equal to omega Cos theta I, where this wave was 

having an angle of incidence equal to theta i.  

This is not equal to omega P equal omega. But, what happens at the turning point, the 

electric field of the wave is parallel to density gradient because this is the direction of 

density gradient. So when the electrons oscillate parallel to density gradient they always 

give rise to density oscillations.  

Normally, we know that if the electromagnetic wave travels in a plasma it does not give 

rise to density oscillations but, because of the background gradient and density density 

gradient in background plasma density and when the electric field is parallel to the 

density gradient then it gives rise to density oscillations. We have learnt that a plasma 

has a natural frequency of oscillation is equal to omega P, so if this wave can tunnel from 

here to a region somewhere here there will be a region called omega P equal to omega 

critical layer. 



So, if the gap between these two regions, these two layers is not large, then this wave can 

penetrate from here to here, and can resonantly excite a plasma wave there. So, there is a 

very special thing that happens here; therefore, P polarize light as the wave rotates or 

changes its orientation, the electric field also rotates and it may give rise to large density 

oscillations or the conversion of the wave into plasma wave can occur. Well certainly 

this is not within the limits of W K B theory, but this phenomena we shall discuss 

sometime during this course in some detail. So, this is a basic difference between the S 

polarized light, and P polarized light; the polarized light is polarized perpendicular to the 

ray like this, and its orientation does not change, it does not give rise to any density 

oscillations. 

However, in the region away from the turning point like in this region etcetera, the W K 

B theory for P polarize light, and S polarize light is the same. So, we shall essentially 

consider or rather limit our discussion to region away from the critical layer or away 

from the turning point, away from the turning point S polarization, and P polarization 

have similar character. And the mathematical analysis will be taken up later to discuss 

the propagation of waves at oblique angle, in a inhomogeneous plasma. I think today, I 

stop at this stage. Thank you very much. 

 


