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Today’s lecture, lecture 39 is about diffusion in magnetized plasmas. If you recall the 

previous lecture 38 you will remember that we have taken up the case of collisional 

plasmas, and we have discussed weakly ionized plasmas but, without magnetic fields. 

So, we have seen the effect of collisions in weakly un-magnetized plasmas, where the 

problem was stated like this, that we had considered the collision of charged particles 

with neutral atoms, there was a dense gas of neutral atoms in which the charged particles 

exhibited a random walk process. 

Today, we are going to take up weakly ionized plasma once again but, now it is a 

magnetized plasma and if you remember last time, we had not discussed fully ionized 

plasmas. This time we will also take up fully ionized magnetized plasmas and describe 



the effect of coulomb collisions, and find an expression for the diffusion coefficient, 

which we have already defined in the last lecture. 
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So, we will study plasma diffusion across magnetic fields and why is it important? It is 

very important a problem in controlled fusion research, it has been found that the rate of 

plasma loss by diffusion can be decreased by applying a magnetic field. Today we are 

going to see how this is done. 
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Let us first take up the case of a weakly ionized plasma, a weakly magnetized plasma. 

So, the weakly ionized plasma is in a magnetic field, qualitatively you know that, 

because of the magnetic field there is the V cross B force on the charge particles in the 

plasma. 

So, we can say that the motion and therefore, the diffusion of the particles parallel to the 

direction of the magnetic field is not affected by the magnetic field, because the V cross 

B force is zero when V is parallel to B. In the absence of collisions the particles move in 

circles in the magnetic field and the in a helical path in the magnetic field, and the 

guiding centers are bound to the lines of force. 
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So, no diffusion occurs in the direction perpendicular to the magnetic field across the 

magnetic field, it is a situation like this figure. Here I show you charged particles in 

magnetized plasma, a single charged particle motion in a magnetic field, it is following a 

helical path, it is bound with the line of force in the magnetic field, the path of the 

plasma, path of the electron or a charged particle here. 

This helix or the helical path is the path of the charged particle, it gyrates about the same 

field line until it makes a collision, this is the coalitional problem that we are taking up. 

So, a charged particle will gyl/gyrate gyrate about the same field line till it makes a 

collision and what happens when it makes a collision? 
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The orbit of the particle is disrupted and a random-walk, we can again take it as a 

random walk type of diffusion. So, what happens is collisions abruptly change the 

velocity of the particle gyrating around the field line. 
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So, the direction in which the particle moves is changed and therefore, the position of the 

guiding center is also changed, you can understand this better from this figure. Here, 

there is a particle gyrating in around field line and let us say the first figure shows you 

when you are looking at the particle in a transverse direction. 



So, you you see a circle and you see the original velocity, at this point at this point the 

particle collides with another charged particle so, the velocity changes direction this is 

the direction of the new velocity the red arrow. 

And therefore, the guiding center shifts, this is then the new path around which the 

particle gyrates, the new circle, this circle and the guiding center shifts from this point to 

this point. If you look at it from a distance then the lower figure shows you what is 

happening, here is the original path of the charged particle, it is gyrating about a field 

line. 

Now, look at this particle in the plasma. Say the electron while gyrating about the field 

line collides with this particular particle, what happens? The direction of its velocity 

changes, and now it gyrates about a different field line and the guiding center shifts so, 

the charged particle has moved across the B field, because of the collision. This is how 

particles diffuse in a collisional plasma in the presence of a magnetic field. 

Let me just demonstrate this again to you, this is the path of the original particle, now it 

collides as it is moving along this path, it collides with the particle here in the plasma and 

acquires a different velocity in a different direction. So, its starts gyrating in a different 

path though in the same direction along a different line of force, and its guide the guiding 

center shifts so, there is a shift, there is a diffusion of the particles across the magnetic 

field. 
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 So, this is how diffusion takes place in a magnetized plasma, the charged particle 

continues to gyrate in the same direction after collision, as you have seen in the previous 

graphic but, the position of the guiding center shifts, and the guiding center undergoes a 

random walk. 

But the mean free path now is equal to the larmor radius instead of the lambda m, earlier 

it was the charged particle that was undergoing a random walk, in a magnetized plasma it 

is the guiding center which undergoes a random walk, and the step length is the larmor 

radius. Now, diffusion across the magnetic field can be slow down by decreasing the 

larmor radius that is, by increasing the magnetic field. 
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So, we have to find out the the diffusion coefficient for a weakly ionized plasma in a 

magnetic field, for the diffusion of particles in a weakly ionized plasma placed in a 

magnetic field. 

As usual, we will start with the equation of motion since, the motion in the direction 

parallel to the magnetic field is absent, there is no motion in the direction in which V is 

parallel to B therefore, we will study the diffusion in a direction perpendicular to the 

magnetic field, across the magnetic field writing the equation of motion in a plane 

perpendicular to the magnetic field. 

Once again, we take the study state isothermal plasma and write down the equation of 

motion, it is written here m n D v perp upon D t is equal to plus minus e n E plus V perp 

cross B minus K B T grad n, the density gradient minus m n nu v perp the momentum 

loss. 
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So, this is the equation of motion for the perpendicular component of the velocity. Once 

again, we solve it under certain assumptions, the way we did for un-magnetized plasmas 

we take the collision frequency to be large so that, in comparison to this term, the term D 

v perp upon D t can be neglected, for simplicity we take the electric field to be zero and 

the density gradient in the positive x x direction you will see that the results arrived are at 

the same are the same, but the algebra becomes pretty simple. 

So, let us see what this equation of motion, reduces to under these assumptions. The term 

on the left hand side is zero and we have also put the electric field equal to zero. So, we 

are left with three terms now the V perp cross B, the density gradient which is parallel to 

the x axis, and the momentum last term. From here we can write down an expression for 

V perp by taking the last term to the left hand side, we are left with the two terms V perp 

cross B and the density gradient in the x direction on the right hand side. 
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Once again we fallow the same process and divide the entire equation by m n nu, but this 

time the v perpendicular has two components x and y components so, we write the x and 

y components of the equation. 

Now here, we have a cross product V perp cross B, which you know very well is minus 

V x j cap plus V y i cap B, if you apply the definition of the cross product then, you can 

simply write the equation of motion for the V x and V y components. You just take the x 

component of V perp and the x component of V cross B term and you get this, the 

density gradient term is already there, and you get this term from the x component of V 

cross B term. This is the x component the V y i cap similarly, the y component you do 

not have in the density gradient.  
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So, you are left with only one term, divide by m n nu you get expressions for V x and V 

y, what is the difference between these two expressions? 

From the earlier case, these are now coupled equations you have V y in the equation for 

V x and V x in the equation for V y so, how do you solve this? You have to get an 

expression for V perp and you have to write the equation, continuity equation. 

So, what do you do? You just, before getting into the algebra we will also make use of 

the fact that, D the diffusion coefficient is K B T upon m nu and we will use the 

definition of omega c equal to e B upon m, and write V x and V y in terms of D and 

omega c. 
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So, in terms of D and omega c obviously you can see that the expressions are much 

simpler. Now, we substitute V x in V y V x from this equation in V y in V y, V x from 

here in V y. What do we get? It is a matter of algebra, we have set V y is equal to minus 

plus omega c upon nu V x so, you substitute V x here is minus so, minus plus and this is 

minus this becomes plus minus omega c D upon n nu, del n upon del x minus omega c 

square upon nu square V y. 
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So, this equation you have V y alone and the density gradient now, you take this term to 

the left side, minus omega square upon nu square V y and you get V y equal to V y 

multiplied by 1 plus omega c square upon nu square equal to plus minus omega c D upon 

n nu delta n y delta x. 

Once again, we use the definitions omega c and D and we write this term omega c D 

upon nu here, the coefficient of the density gradient, do some simple algebra substitute 

for D, multiply and divide by e B so, we can express this as omega c square upon nu 

square K B T upon e B, this is also that the final expressions look simpler and elegant. 
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So, we rewrite this equation for V y as V y 1 plus omega c square, tau square, which is 

nothing but, 1 upon nu square this is what we have used. And omega c D upon nu as K B 

T upon e B, omega c square upon nu square 1 upon nu square we have written as tau 

square. 

So, we get an equation for V y, which does not contain V x, it is a result in terms of the 

density gradient. We divide the expression by 1 plus omega c square tau square and we 

get an expression for V y. 
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Similarly, by substituting V y in V x here, this now in this V y is equal to minus plus 

omega c upon nu V x into the expression for V x, we can again derive an expression for 

just V x the way we have done for V y, V x 1 plus omega c square tau square is equal to 

minus D upon n del n upon del x. 
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So, we get two equations for V x and V y, which are now uncoupled and they are now 

given in terms of the density gradient, this is what we had done for un-magnetized 

plasmas also. We have a term D upon 1 plus omega c square tau square here. Now, we 



have to write an expression for the perpendicular velocity vector, which is again 

reconstituted by adding up the x and y vector components. 
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So, although the expression looks a bit involved you will find that, this is simply the V x 

term, this is the V y term and we define a new quantity called D perp here, and another 

quantity v D here so, that the expression for v perp becomes simple. It becomes minus D 

perp, grad n upon n, grad n is simply in the x direction so, del n upon del x can be written 

as grad n plus another term V D upon 1 plus nu square upon omega c square, this is what 

we have defined to write the second term in a simple expression, this is what we have 

defined D perp equal to D upon 1 plus omega c square tau square and v D equal to plus 

minus K B T upon e B, 1 upon n del n upon del x j cap. 
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So, this particular term except for this the frequency dependent term can be written as V 

D, and if you divide this whole thing by omega c square t tau square you can write the 

expression as 1 upon, 1 plus nu square upon omega c square. 

So, the D perp is the perpendicular diffusion coefficient for weakly ionized plasmas, and 

what is this term V D, that we have defined. It is actually a diamagnetic drift term, write 

now we are not going into the diamagnetic drifts across a magnetized plasmas, we will 

be concentrating on the diffusion coefficients. 

So, we have found a diffusion coefficient for magnetized, weakly ionized plasmas as D 

upon 1 plus omega c square tau square, you can see that it depends on the collision 

frequency, because you have tau here or 1 upon nu square and also on omega c square. 
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So, let me summarize this discussion on diffusion across a magnetic field for weakly 

ionized pro/plasma plasma, we have derived an expression for the perpendicular velocity 

term. 

We have found that, there is an extra term due to the diamagnetic drift, write now we do 

not pay any attention to that, and we have defined the perpendicular diffusion coefficient 

The diamagnetic drifts are perpendicular to the gradients of potential and density, and 

these are slowdown by collisions with neutral atoms, because there you have the 

collision frequency. The diffusion drifts on the other hand are parallel to the gradients in 

density, the diffusion drifts are parallel to the density gradients these are in the direction 

of the density gradient, and these are reduced as compare to the case when B is zero, 

when you have B you have a term omega c here so, the diffusion drift is reduced. 

However, the presence of collisions enhances this phenomenon of diffusion, because we 

can see that, this term would be zero if the collisions were absent, you have nu square D 

upon nu square plus omega c squares. So, if nu was zero, D perp would be zero there 

would be no diffusion across the magnetic field, this is in the direction of the density 

gradient it is reduced as compare to the case when the magnetic field is zero, and these 

are enhanced by the presence of collision, the diffusion processes enhanced. So, this in a 

nutshell is diffusion across a magnetic field for a weakly ionized plasma. 
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Now, we come to the case of collisions in fully ionized plasmas, in fully ionized plasmas 

all collisions occur only among charge particles, in weakly ionized plasmas you will 

remember the collisions were between charged particles and neutral atoms now, the 

collisions are between charged particles and these are the coulomb collisions or the 

Rutherford scattering that I have shown you last time. 

Now, if we want, if we look at the collisions between charged particles, there is a 

difference between, collisions between, like particles and collisions between unlike 

particles, for example, if it is an electron, electron collision or an ion, ion collision the 

masses are about the same, what happens is simply that the velocities get exchanged and 

the guide, and the center of mass of the system remains just where it was, the guiding 

centers mostly remain in the same position. 

So, for our calculations we can neglect this, there is no diffusion as such for or very 

small diffusion for like particles collisions, particularly for head-on collisions you can 

remember for, you can go back to your college physics and you can see that the two 

particles of equal mass just exchange their velocities. 

And for other finite angle collisions, the center of mass of the system remains stationary 

and so on, an average such collisions produce small diffusions, which we can neglect. 
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This is the figure which shows the collision of like particles, this is one particle and this 

is the other particle, they are gyrating, they collide and their paths shift in a manner that, 

the center of mass remains the same it is stationary, it is a 90 degree collision between 

the particles. 
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Now, what is of interest here in the diffusion phenomena, is the collision of unlike 

particles, collision of electrons with ions or ions with electrons in the plasma fluid. And 

here we take records to coulomb collision and coulomb collisional cross section. 



What happens in a coulomb collision is that, a charged particle, as a charged particle 

approaches an ion, it undergoes scattering and follows a hyperbolic path, if we go back 

again to our college physics, we can find out the path of charged particles scattering. In 

this figure, we have shown the collision at the distance of closest approach, this distance 

r 0 here is the impact parameter, it is the minimum value of the impact parameter. So, it 

is called the distance of closest approach and this is the electron path the solid line, this is 

the original path of the electron this, horizontal line and it gets deflected in the collision, 

because of the presence of the ion. 
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Now, in an electron ion collision, the mass of the ion is much larger than the mass of the 

electrons so that, we can assume that the center of mass is at the ion and at the ion and 

the ion remains almost fixed during the collision. 

The coulomb force is simply between the two, if we do not take the atomic number into 

account, to keep things simple we can write the coulomb force as F equal to minus e 

square upon r square. If the velocity is V then and the distance of closet approaches r 0 

then, this force acts for a time r 0 upon V. 

So, the change in momentum is just the average force multiplied by the time so, you 

multiply e square upon r square, by r 0 upon V, we can put r equal to r 0 there so, this is 

the change in momentum e square upon r 0 V. 
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And we are right now discussing large angle scattering, when the coulomb potential 

energy is equal to the kinetic energy of the electron, this scattering angle is ninety 

degrees and at those scattering angles the change in the momentum is of the order of 

momentum itself. 
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So, we have an equation which gives us the change in momentum as e square upon r 0 v, 

from where we get an expression for the impact parameter as r 0 equal to e square upon 

m v square. 



And once again using the classical total collisional cross section as pi r 0 square, we 

simply put r 0 square here we get the collisional cross section as pi e raise power 4 upon 

m square v 4 and therefore, the collisional frequency is simply n sigma v, we have 

defined it earlier and this is equal to n pi e raise power 4 upon m square v cube so, we 

have our collision parameters. 
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Now, there is something which we need to discuss here is Debye shielding which you 

have studied earlier in these lectures. Debye shielding imposes a maximum value on the 

impact parameter, as you know in a plasma, the positive charges attract the electrons and 

ripple the ions and so a net negative charge accumulates around the positive charges, 

thus producing or shielding the electric field due to the positive charges, on the other 

hand electrons also have thermal energy. 
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So they cannot just collapse on to the ions so, there is an equilibrium which is established 

between the attraction, force of attraction of the ion on the electron and, because of the 

collision, due to collisions, because of the movement of electrons away. 

So, due to inter particle collisions, coulomb attraction and thermal motion comes into 

equilibrium and the field of the plasma is shielded from any external fields, this is the 

Debye shielding. You also studied the parameter Debye length, which is the screening 

distance over which the coulomb field decays exponentially. 
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So, beyond the Debye length the coulomb field of the charged particle falls very fast and 

so, within the plasma electric fields applied to the plasmas beyond a few Debye lengths 

do not matter, the plasma is shielded so the upper limit of the impact parameter then 

becomes equal to the Debye length. 

So, we are considering a collision between r 0 and the Debye length lambda D, and we 

have seen the parameters for ninety degrees collisions for small angle, so the b maximum 

impact parameter is simply the Debye length. 

(Refer Slide Time: 32:31) 

 

We have already written the collision frequency for 90 degrees or large angle scattering 

for the small angle scattering effects, a small correction which is called as spitzer 

correction needs to added. 
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And we will not going to the calculations, because these are pretty involved, with this we 

can now once again try and derive the coefficient of diffusion in a fully ionized plasma. 
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Once again, we write the equations for both this species, m n d v i upon d t is equal to e n 

E plus V i cross B minus grad p i plus P i e and similarly, the equation for the electrons. 

The last term in these equations p i e and P e i are the momentum terms, momentum gain 

caused by collisions of ions with electrons and electrons with ions. Once again, we will 

be making certain simplifications and we will study steady state and isothermal plasmas. 
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So, the term on the left hand side then becomes zero and for isothermal plasmas, we can 

write the pressure gradient in terms of the density gradient so, the equations are 

somewhat simplified. 

We have e n E plus v i cross B minus K B T I grad n plus P i e equal to 0, and in the 

same way we can write the equation for the electron with v i replace by v e, T i by t e and 

P i e become instead of P i e we write P e i. 
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From conservation of momentum P i e is simply minus P e i and in a fully ionized 

plasma v e nearly equals v i, it is not exactly equal you will see the implications, if you 

remember p is m n v nu i. 
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So, in terms of the velocities you have P i e minus m n multiplied by v i minus v e nu e i 

P e i is minus P i e so, you write that expression. 

Now, on physical grounds we expect the momentum term to be proportional to three 

factors, the coulomb force; since the coulomb collisions are coulomb collisions, density 

of electrons; density of scattering centers which are equal and relative velocity of the two 

fluids. 

So, P e i lets take P e i is proportional to e square n square and the difference of 

velocities here, we replace the proportionality constant by eta here. 
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So, we write P e i as m n v i minus v e nu e I, and we have on physical grounds an 

expression for P e i in terms of eta, and if we compare the two we get nu e i in terms of 

eta or eta in terms of the collision frequency. 
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What is this constant eta? We can see that it is nothing but, this specific resistivity of the 

plasma. How it is so? Let me explain very quickly but, before that there is one 

expression for eta, which we can also write by substituting for the expression of the 



collision frequency in terms of the mass, and the charge, and the velocity we get an 

expression for eta equal to pi e square upon m v cube. 
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And if we account for the small angle collisions, we have to multiply by a factor log 

lambda which is the spitzer correction again, lets come back quickly to the point why we 

call eta as the specific resistivity. 
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If you go back to the equation of motion and put p is equal to 0 and K B T e equal to 0 in 

this equation of motion for electrons, for steady state you get a simple expression e and E 

equal to P e i. And since j is e n v i minus v e, we can write P e i is equal to eta e square n 

square v i minus v e equal to eta e n j, from where we get E is equal to eta j. This is 

nothing but, the ohm’s law. 
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And so eta is nothing but, the specific resistivity, with this we can now make a 

calculation for the diffusion coefficient for fully ionized plasma in terms of the specific 

resistivity. We write the equations of motion, for steady state isothermal plasmas, for 

electrons let us say we get this particular equation, we have the electric field term the V 

cross B the density gradient and the momentum terms. 
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We do a simple algebra and we write E V e cross B, in terms of e gradient n and 

substitute for P e i here, P e i. We say that E is perpendicular to b, the density gradient is 

perpendicular to B and the electron and ion velocities are perpendicular to B. 
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Under these assumptions I have written down the equations again for ready reference, 

under these assumptions we write the equation and take the cross product of this 

equation and the magnetic field from the left, B cross e, v e cross B and from the left you 



have this, you have this, and you have this, in all three terms you take the cross product 

of b from the left. 

So, on the right hand side minus e B e, B cross e is simply e, e cross B similarly, we 

observe this minus sign in the second term by interchanging the cross product, and in the 

third term too so, we interchange the vectors in the cross product and now we have to 

calculate the vector triple product. 
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From yours college physics you know that A cross, B cross, C is A dot C B, minus A dot 

B C so, you can apply that result, and what do you get under the condition that v e and v 

i are perpendicular to B, you get the triple product simply as B square v e write, it is a 

simple expression. Substitute that in the original equation you get a simple expression on 

the left hand side, the right hand side remains the same.  
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You divide then by e B square the entire equation so, you get this equation in which you 

have divided the previous equation by e B square so, e and E cancelled out in the first 

term, and here you have e B square in the denominator.  
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This is simple algebra, you can repeat the same procedure for ions and write an 

expression for the ion velocity in terms of E cross B gradient, and the momentum terms. 

These are the two terms for electron velocity and ion velocity, in these you have an 

expression for v e minus v i so, we have to still do some more algebra, what we do is we 



subtract v i from v e and we get an expression for v e minus v i in terms of grad n cross 

B, which we substitute again in these two equations. 

So, we get v e, all other terms remaining the same the last term has another vector triple 

product del n cross B, cross B, you use the same method to simplify the last term but, the 

triple product is this time different, it is a cross B then cross c, which is a different 

product apply this and you get a simple answer del n cross B, cross B is equal to minus 

del n B square. 
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So, v e becomes, just substitute this term in the third term on the right hand side you get 

an expression for v e, all other terms are the same. Having found v e, we substitute it in 

the continuity equation the way we did earlier, and simplify del dot n v.  
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This is the equation when we substitute v e, here you will know from the vector identities 

that del dot del n cross B is 0. I have shown you the vector identity del dot E cross B is 

also 0 since, E cross B is constant so, this term is 0 and this term is 0, and we are left 

with two terms here on the right hand side. 
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We are left with two terms, I have repeated this expression, in this huge expression two 

terms are zero this term and this term so, we we are left with two terms one of which 



gives us the coefficient of del square n, and that is nothing as you know but, the diffusion 

coefficient, this is nothing but, the perpendicular diffusion coefficient. 
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And since eta is m nu upon n e square, we can write this diffusion coefficient in terms of 

eta as eta n K B, T e plus T i upon B square this is the perpendicular diffusion coefficient 

for a fully ionized gas. 
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So, we have been able to derive an expression for the perpendicular diffusion coefficient 

in fully ionized plasmas and weakly ionized plasmas in the presence of magnetic fields. 

What, we let us compare quickly the D perps in both cases you will note that, they are 

proportional to 1 upon B square so, as you increase the magnetic field diffusion across 

the field is reduced. However, the difference is that for a fully ionized plasma D perp is 

not constant, it depends on the density. Moreover, the specific resistivity is proportional 

to k t raise power minus three half so, D perp in a fully ionized plasma decreases as the 

temperature increases and the opposite is true for the weakly ionized plasmas, this occurs 

because of the velocity dependence of coulomb cross section. 

The third difference is that, diffusion is automatically ambipolar in a fully ionized 

plasma if we ignore like particle collisions, it is the diffusion coefficient for the entire 

fluid, no ambipolar field arises, because both species diffuse at the same rate so, these 

are the differences between diffusion in a weakly ionized magnetized plasma and a fully 

ionized magnetized plasma. 
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For the sake of interest, I would like to show you graphic, showing the theoretically 

determined perpendicular diffusion coefficient D perp, this is D perp on a logarithmic 

scale. This is the classical diffusion, which is the expected diffusion we are taking a 

logarithmic scale and showing D perp versus collision frequency. 
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There is an enhanced diffusion in this so called plateau regime, it is a, it is an 

experimentally observed situation and it is still an area of active research for explaining 

this particular diffusion phenomena, which appears in a tokamak in controlled thermo 

nuclear fusion. 

So, with this we come to an end of the discussion today on diffusion in magnetized 

plasmas. In this particular lecture, we have determined the diffusion coefficient for a 

weakly ionized plasma, in a magnetic field the plasma is also collisional so, we have 

taken into account the effect of collisions in a weakly ionized plasma in a magnetic field 

then, we have also determined the diffusion coefficient for fully ionized magnetized 

collisional plasma. So, this is all for today, thank you very much. 

 


