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In today’s lecture, we will be taking up the topic diffusion in plasmas. Diffusion, why do 

you need to study diffusion, because it is a very important problem in plasma physics. 

(Refer Slide Time: 00:51) 

 

The references, before I go into the details of the problem the I would like to tell you 

about the references for this particular lecture. These are introduction to plasma physics 

by F F Chen and introduction to plasma physics by R Fitzpatrick. 
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Now, as I said, why do we need to study diffusion phenomena in plasmas. One of the 

reasons is that plasma confinement is a key problem in plasma physics and engineering. 

It is very important particularly in controlled thermal nuclear fusion, which is a very 

active area of research today. 

You have learnt in the initial lectures, that realistic plasmas have a density gradient, 

which gives rise to pressure gradient. Now, plasmas tend to diffuse, because of the 

pressure gradient. Therefore, it is important when we need to confine plasmas, it is 

important that we study the diffusion of charge particles in plasmas. 

Plasma diffusion can occur at different rates, it is a phenomena phenomenon which 

happens in the presence of magnetic fields and even in the absence. So with and without 

magnetic fields, the intend to study the diffusion process in plasmas. 



(Refer Slide Time: 02:23) 

 

You also know that plasmas are collisional as well as collisionless. Collisional plasmas 

can be categorized into two types. Fully ionized and weakly ionized. What is the 

difference between the two types of plasmas, as far as today’s lecture is concerned. We 

will be taking up weakly ionized plasmas, in which we will consider the collisions with 

of charge particles with neutral atoms. So, we are discussing diffusion in collisional 

weakly ionized plasmas to begin with in this lecture. 
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What is a weakly ionized plasma, as I have said, in a weakly ionized plasma collisions 

occur between charge particles and neutral atoms and so, we study the effect of collisions 

between plasma particles for the diffusion and diffusion as I said occurs mainly, because 

of collisions between charge particles and neutral atoms. 

In this lecture, we will study the effect of collisions, first define the collision parameters, 

define the diffusion parameters and solve the equation of motion in the absence of 

magnetic fields. We will also obtain the diffusion coefficient for ambipolar diffusion and 

for a very special case of diffusion in laser produced plasmas. Why are weakly ionized 

plasmas important? 
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There are many examples of weakly ionized plasmas around us. I have taken up the 

example of an aurora. In an auroral emission, this kind of aurora, the one that I have 

taken up. I am showing you the picture. Electrons collide with oxygen atoms to produce 

light of wave length 557.7 nanometer. This is a weakly ionized plasma. 
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Other examples of weakly ionized plasmas are, plasmas in the laboratory, ionospheric 

plasmas, high pressure arcs.  
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The study of weakly ionized plasmas and diffusion phenomenon in this kind of a plasma 

is also important, because of the industrial applications of such plasmas. I have chosen 

two such applications. One is that of plasma nitriding. When metallic surfaces are placed 

in a weakly ionized nitrogen plasma, what happens is that nitrogen atoms diffuse into the 

surface of the metal and this causes surface hardening. This kind of a treatment in a 



weakly ionized nitrogen plasma prevents the wear and tear and corrosion of the metal. 

And so, we find that the gears of cars, knives and other industrial components are treated 

with such weakly ionized gaseous plasmas. 

Similarly, there is another interesting application, that of plasma treatment of textiles. 

Now, textiles are moved in weakly ionized plasmas to change the surface chemistry and 

chemical composition and to attain desired properties in the material in the textile. For 

example, plasma treatment of wool makes it shrink resistant. Cotton is treated by this 

kind of a plasma and it makes it hydrophobic, which means that water does not stick to 

cotton. And synthetic textiles are treated in this kind of a plasma to make them 

hydrophilic. So, water absorption by a such plasma treated synthetic textiles increases 

and they have become comfortable to wear in summers. 

So, amongst many other applications of weakly ionized plasmas, these are two very 

interesting industrial applications, where diffusion phenomenon is primarily responsible 

for these properties. 
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So, that is why we study weakly ionized plasmas. As I have said earlier, what is a weakly 

ionized plasma? It is a non-uniform distribution of electrons and ions in the background 

of a large number of neutral atoms. In this figure, I have shown the model of a weakly 



ionized plasma. If the colors distinct to you, then the red colored smaller dots are the 

charged particles. 
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Now, as the plasmas spreads out due to pressure gradient and electric field, individual 

particles undergo a random walk, colliding frequently with neutral atoms. So, we are 

essentially treating the diffusion in weakly ionized plasmas as a random walk problem of 

charge particles amongst a dense background of neutral atoms. 

(Refer Slide Time: 08:25) 

 



This is the module. So, diffusion in weakly ionized plasmas are shown here. In this 

figure, this takes place due to random collisions of the particles with the atoms. 
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So, you must remember that, in a weakly ionized plasma charge particles collide 

primarily with neutral atoms and individual particles collide in the manner of a random 

walk. They collide frequently with neutral atoms and we treat it as a random walk 

problem. So, we can apply the results, that we already know from our college physics for 

the random walk problem 
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This is the kind of animation, which shows the random walk for a weakly ionized plasma 

or diffusion due to random collisions. It is available on the common Wikipedia, 

commons. I have given the source here. 
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Now, when we treat the collision as a random walk problem, the collision parameters 

that we need to know are mean free path, collision frequency and collision cross-section. 
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So, let us see, let us go back to the college physics and see how we can obtain the 

definitions and the expressions, which are relevant to plasma physics. You may recall 

that, the mean free path is the mean distance travelled by a particle between two 

successive collisions. 

So, if lambda 1, lambda 2, lambda 3, lambda 4, lambda N are successive free paths, 

which the particle travels in time t in N collisions, then we have lambda m is equal to 

sigma i lambda i upon N. This is the equation, that defines the mean free path. It is a 

simple algebric equation. 
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This is a pictorial representation of the mean free path, where the electron or the charge 

particle is colliding with different atoms in the plasma and in a random manner. 
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Now, if V is the average speed of the particle, then lambda m which is the sum of all the 

free paths can be written as V multiplied by the total time t divided by N, the number of 

collisions. Let us say that, tau is the mean time between successive collisions. Then, if 

the total time is t and N is the number of collisions, the mean time between successive 

collisions is nothing but tau equal to t by N. 

So, combining the equation lambda m equal to V t by N and tau equal to t by m, we get 

an expression, lambda m equal to V tau from, where tau is equal to lambda m upon V. 

This is the mean time between collisions.  
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And from here, we get the expression for the collision frequency, which is 1 upon the 

mean time tau and is given by V upon lambda m. The collision frequency is nothing but 

the average number of collisions per second. 

 (Refer Slide Time: 12:20) 

 

So, these parameters you must be familiar from your usual college physics in the kinetic 

theory of gases. We are going to apply this now to plasma physics. I have summarize the 

results in this slide for you, where I have given the mean free path, the mean time 

between successive collisions and the collision frequency. The mean free path is lambda 



m equal to V t upon N, mean time between successive collisions is tau equal to lambda 

m upon V and collision frequency is simply 1 upon tau equal to V upon lambda m. 
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So, these are the collision parameters, which are for any random walk problem. These 

are the definitions. But we still need to know, what the collision cross section is and we 

still need to ask, how is lambda m related to the microscopic properties of the plasma. 

Because we need to apply these concepts to plasma physics. So, what are the properties 

of the plasma? 

The number density and the collision cross section are some of the properties. Two of the 

properties to which, we can relate the mean free path. So, we first define the collision 

cross section and then, find the relation between lambda m and the plasma properties the 

collision cross section and number density. 
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Now in the collision theory, each collision is described by a collision cross sections 

sigma, what is this what is the definition of the collision cross section?  
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Lets just look at an example of a very famous scattering experiment. This is the 

animation, we will be discussing this sometime later. The Rutherford scattering, it is a 

very famous experiment in physics, where alpha particles were bombarded on very thin 

gold foils and whereas, the existing Thomson’s model predicted that all alpha particles 

would just pass through the gold foil. What was observed was, that some of them just 



bounced back, there was a back scattering. We will not go into the details but this is the 

kind of an experiment, in which you can determine the collision cross sections. 
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So, what is a collision cross section? There are two kinds of cross sections. One is called 

the differential cross section and the another the other is called total cross section. We 

define the differential cross section as, number of particles scattered per unit time in a 

solid angle in a given direction divided by incident flux. What is the incident flux, it is 

the number of particles incident on the target per unit area, per unit time. 
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So, let me just show you the experimental set up. First, this is the experimental set up, 

where the incident beam is bombarded on the target and then it is observed in a solid 

angle. You see a solid angle, which is centered at the scattering angle theta. It is the cone, 

you can imagine it to be a cone centered at the solid at the scattering angle theta and 

between theta and theta plus D theta. So, if you count the number of particles scattered in 

this particular solid angle detected by the detector here, then the number of particles 

scattered per unit time in a solid angle, in the direction theta, divided by the number of 

particles incident on the target per unit area, per unit time is defined as the differential 

cross section. 
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Now, the interesting thing is, that the dimension of the differential cross section is that of 

area. So, if you want to understand what it is physically, we can say that, it is the 

effective area offered by this target or the scatterer to the incident beam of particles. It is 

the effective area offered by the target to the incident beam of particles. This is an 

important concept, we will be using later in this lecture. So, this is once again the 

schematics of a scattering process, you are counting the numbers of particles in this solid 

angle and then you divide it by incident flux. 
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So, there is another parameter called the total cross section, which is you count the total 

number of particles scattered, you plays the detectors at all angles, all possible scattering 

angles around the target and you count the total number of particles scattered by the 

target. You get the total cross section. Mathematically, you just integrate the differential 

cross section over all values of the solid angle. 

Physically it means, the total area offered by the target to the incident particles. These 

two things, the physical concept is more important for you to remember, as far as the 

further treatment of this process of diffusion is concerned, that it is the area offered by 

the target atoms to the incident or the colliding charged particles. 
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Now, interesting an interesting point as for as the plasmas are concerned is that collisions 

are of two types, elastic collisions and inelastic collisions. Elastic collisions are those in 

which, the momentum and kinetic energy of the system of incident particles and target 

particles are conserved. So, the total linear momentum and the total kinetic energy are 

conserved in this process. 

Inelastic collisions are the ones in which, the linear momentum or momentum, it could 

be angular momentum also, as we will see in the scattering of charge particles by atoms 

in a plasma, momentum is conserved but kinetic energy is not conserved. And so, there 

can be energy loss due to heat loss in plasmas. Inelastic collisions taking place in 

plasmas give rise to energy loss by way of heat loss 
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Now, having defined the collision cross section as an effective area or the total area 

offered by the target atoms to the colliding electrons or ions in a plasma. Let us find out, 

what its value is for a weakly ionized plasma. 

As you have learnt earlier on in this lecture, in weakly ionized plasmas, charge particles 

collide mostly with neutral atoms and molecules. So, let us say that they are colliding 

with neutral atoms and let r be the effective radius of the neutral particle. 

We can describe this scattering process using the hard sphere scattering model. And we 

in the hard sphere scattering model, we assume that the charged particles, the incident 

charged particles say the radius is r e and the neutral particles of radius r are hard 

spheres. What does this mean? This means, that this spheres cannot penetrate each other. 

So, they cannot penetrate a distance, that is smaller than r e plus r. If this is one sphere of 

r e and an another sphere of r, they cannot get into each other. This will be the distance, 

smallest distance between them r e plus r. 

Without going into the derivations, I am just giving you the result of the collision cross 

section for hard sphere scattering, which is shown here.  
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And it is shown, I have also written it down for you, it is sigma equal to pi r e plus r 

whole square. 
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Now, since r e is much less than r, the radius of the charge particle which is either an 

electron or an ion is much less than the radius of the atom or the molecule. We can say 

that sigma is equal to pi r square. So, pi r square is the effective cross section of the 

target atom or molecule. 



So, assuming the hard sphere scattering model, we have arrived at an expression for the 

scattering cross section, that sigma is pi r square. This is the effective area offered by the 

target atom of molecule to the charged particles in the plasma. 
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Now, how do we express the mean free path, in terms of this collision cross section and 

number density. Imagine a cylinder in the plasma and there are certain atoms of 

molecules and a charged particle collides with those atoms and molecules in that 

particular cylinder. 

Let, the cross sectional area of the cylinder be pi r square, which is the area offered by an 

atom or a molecule to the incident charged particle. So, if we take a cross sectional area 

pi r square in time t, let us say it sweeps out the cylinder shown here on the slide. 

Then, what is the mean free path as per our original definition. It is the mean distance per 

collision. So, it is equal to the length of the path divided by the number of collisions. 

This is what we had done in our basic definitions sigma lambda i upon n. What is the 

length of the path travels by a charged particle? It is the speed multiplied by the time, in 

which we have taken the cylinder divided by the number of collisions is just volume of 

the cylinder multiplied by number of target atoms per unit volume. 
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So, this is what it is, mean free path is distance travelled divided by volume into number 

density. Distance travelled is some simply V t, you can see it in the expression of lambda 

m V t and volume is pi r square multiplied by the length V t and number density is n n. 

We have denoted it by n n, number of atoms per unit volume in the plasma. 

So, V t and V t cross out and we get lambda m as 1 upon pi r square n n or 1 upon sigma 

n n. So, this is nothing but the mean distance per collision. We have obtained an 

expression for the mean free path in terms of sigma the collision cross section and the 

number density 
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From there it is simple to get the mean time between collisions, which is tau and lambda 

m upon V. This is what is given here, tau is equal to lambda m upon V is equal to 1 upon 

sigma n n V and collision frequency is simply 1 upon tau is equal to n n sigma V. 

Remember, V is the average velocity.  
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So, strictly speaking, we should average both sigma and V over the distribution function 

for V. So, if we assume Maxwellian distribution of velocities, we can write nu is equal to 

n n sigma V bar, where V bar and sigma are obtained from Maxwellian distribution. 



The temperature dependence of the collision frequency then goes as square root T. 

Because sigma is a constant and V bar goes as square root T.  
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To summarize the collision parameters, we have established four of them. The collision 

cross-section, the mean free path for collisions in terms of sigma and n n, mean time 

between collisions and the collision frequency. We shall be using these parameters. 
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The next category of parameters, okay before we go to the next category the diffusion 

parameters, we it is an interesting thing to understand physically what this mean free 

path is as for as plasmas are concerned. 

To do that, we need to relate the mean free path to the flux of the particles. So, as shown 

in the diagram here, let us consider a slab of area A and thickness d X in the plasma. And 

these are the incident charged particles, incident on the slab. They could be electrons. 

They could be ions. 
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You know that, the number density is n n atoms per unit volume. So, the number of 

atoms in this slab is n n multiplied by the volume of this slab, which is A dX. If the cross 

sectional area of these atoms is sigma, then the area that the slab offers the incoming 

particles for scattering is sigma multiplied by the number of atoms in the slab, which is 

sigma n n A dX. A s we are denoting it by A s, this is sigma n n A dX. 
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This is the pictorial representation of this process area offered by the slab in the plasma 

to incoming charged particles. 
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Now, this is the fraction of the total area. So, the fraction of this slab area that blocks the 

incoming charged particles is simply A s upon A, which is sigma n n dX. Because A 

cancels out. So, this is the fraction. 



(Refer Slide Time: 28:31) 

 

Now, we come to the incident flux, what is the expression for the incident flux. If, F is 

the incident flux and F is incident on the slab, then some part of the incident beam is 

blocked, which is sigma n n dX. So, that much flux will then be blocked by the slab. 

Sigma n n dX is the fraction multiplied by the incident flux, that much flux will not 

emerge from the other side of the block. So, the flux of particles emerging on the other 

side of blocks is simply F minus F sigma n n dX. Now, this gives me an expression for 

the change in flux. This is dF, this is the change in flux is equal to F prime minus F is 

equal to minus sigma n n F dX. 
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So, the change in flux with distance comes out to be a first ordered differential equation, 

d F upon d X is equal to minus sigma n n F and its solution is an exponential solution, 

exponentially decane solution. You have come across these kinds of equations, 

elsewhere at many places in physics, I will tell you in a moment. Now, for this kind of an 

exponential, linear exponentially decane function, you can see that when X is equal to 1 

upon sigma n n this, then F is equal to F 0 upon e, F is reduced to 1 by e of its initial 

value. 
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So, this is the length, in which the flux is reduced to 1 by e of its initial value and you 

will recall, we have just define, we have just obtained an expression for lambda m as 1 

upon sigma n n. So, F becomes F 0 exponential minus X upon lambda m, here. So, what 

does this equation tell us. It tells us, that in a distance lambda m, the flux would be 

decreased to 1 upon e, of its initial value. After travelling a distance lambda m, a particle 

will have a finite probability of making a collision. 

Such equations, you have come across in radioactive decay as well as, these are also 

equations that you will come, you come across in radiation biology, where it gives you 

the depth to which radiation, electromagnetic radiation can penetrate biological systems. 

But that is a different story. 
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Now, having understood the collision parameters, we come to the diffusion parameters 

and we define the diffusion coefficient and mobility. For introducing the diffusion 

parameters in collisional plasmas, we have to account for the momentum removed due to 

collisions. So, we have to modify the fluid equation of motion and the momentum that is 

removed by a collisions is given by this equation dp upon dt is equal to minus t upon tau 

is equal to minus m n nu V, nu comes from 1 upon tau. 
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When we write this particular term in the equation of motion, the collision term, the 

equation of motion becomes this. m n d V by dt is equal to m n del V by d del t plus V 

dot del, V the convective term and in the presence of electric and magnetic fields and the 

pressure gradient, we have to add the collisional term. We solve this equation of motion 

under certain simplifying assumptions and those are, that firstly, we consider the case of 

un-magnetized plasma. 
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We will take up magnetized plasmas later and take the V cross B term also but not today. 

So, for un-magnetized plasma B is equal to 0. Further, we take only the steady state 

solution of the equation of motion. So, we put del V upon del t also 0. And we make 

another assumption, physics is all about simplifying the problems. So, we make another 

assumption that the drift speed or drift velocity is very small. So, that this second, order 

term or the convictive term can be neglected in the equation of motion, the V dot grad V 

term. 

So, we are left with these three terms q and E minus grad p minus m n nu V is equal to 0. 

This is the equation of motion, that we need to solve. 
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So, here again, I have written the assumptions and the equation of motion.  
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Now, from this equation of motion, we can immediately write an expression for V, 

which is q and E minus grad p upon m n nu and we get two terms, we can express them 

in terms of two terms and for the case of isothermal plasmas, the pressure gradient term 

can be expressed as V is equal to k B T grad n. And so we get, we have V is equal to q 

upon m nu E minus k B T upon m nu grad nu grad n upon n. This is the equation, 

solution for drift velocity. 
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In this equation, the coefficient of the electric field q, the modulus of q, we do not 

include the sign of the charge q upon m nu is defined as mobility and k B T upon m nu is 

defined as diffusion coefficient. So far, we have written it only for one kind of charged 

particles, this is just so that you recognize the expressions. 
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Interesting point about that diffusion coefficient is that, it has the dimension of L square 

upon t. You can readily show this yourself by writing the dimensions of all the 

quantities. You will find that it comes out to be lambda square upon tau, which has the 

dimension length square upon t. 
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Now, we express the flux in terms of mobility and diffusion coefficient flux is n V is 

equal to n. You substitute for V, you get an expression straight away, which can be 

written as plus minus mu n E minus D grad n. This is a simpler simple expression, the 

sign plus minus comes due to the sign of the charge q. 
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So, we get an expression for the flux in terms of the electric field and the grad density 

gradient. And when we put the electric field equal to 0, what do we get? We get that, the 



flux is proportional to density gradient. F is equal to minus D grad N, this result is known 

as fick’s law. 
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And what does Fick’s law tell us. It tells us that, diffusion is a random walk process and 

this arises because a net flux from dense regions to less dense region happens because 

more particles start in the dense region, the flux is proportional to density gradient. 
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However, you will you do know that, electric field is not exactly 0 in a plasma. Because 

electrons have higher thermal speeds than ions. The diffusion coefficient at the same 

temperature, the diffusion coefficient for electrons is greater than the diffusion 

coefficient for ions. And so, electrons diffuse faster in the plasma. This leads to an 

imbalance between electron and ion densities creating an electric field. 

However, what happens is, that the electric fields so created, acts in a direction, that 

slows down the electrons and speeds up the ions. So, until the time that both of them 

diffuse at the same rate. This phenomenon is called ambipolar diffusion, in which the 

electrons and ions diffuse at the same rate both. Ambi means both and so both kinds of 

charged particles diffuse at the same rate. 
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Now, we will solve the equation of motion for ambipolar diffusion to obtain an 

expression for the diffusion coefficient. Lets go back to the equation of motion for 

isothermal plasma, which was q and E minus K B T grad n minus m n nu V is equal to 0. 

We can write it for electrons and for ions. For electrons, this becomes minus e E, we 

divide the equation by n, so we get minus e E minus K B T e upon n e grad n e minus m 

e nu e V e is equal to 0. Similarly, we write this expression for ions. The charges plus e, 

so we get e E minus K B T i upon n i grad n i minus m i nu i V i is equal to 0. 



So, what have we done? We have simply written the equation of motion for isothermal 

plasma for both electrons and ions. We have divided the equation by the number density 

and we have used the charge minus e for electrons and then the temperature for electrons 

is T e number density is n e and collision frequency is nu e and mass is m e. Similarly for 

ions, the charge is plus e, so we have e E. The temperature is T i, the number density is n 

i, the mass is m i, the collision frequency is nu i and the velocity is V i. We have done, 

we have written the equation of motion for electrons and for ions. 

Now, we would like to obtain an expression for the diffusion coefficient for ambipolar 

diffusion. How do we do that? What we do is, simply add the equations. Add the two 

equations that I have shown you for electrons and for ions. 
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So, what do we get? We get an expression e E minus K B T i upon n i grad n i minus m i 

nu i V i minus e E minus K B T e upon n e grad n e minus m e nu e V e is equal to 0. The 

term e e and minus e e cancel out. e e and minus e e cancel out and we are left with 

minus K B T i upon n i grad n i minus m i nu i multiplied by V i minus k B T e upon n e 

grad n e minus m e nu e V e is equal to 0. It is still looks a pretty complicated equation. 

And so, we solve it, we solve it under certain assumptions, which are valid for the case, 

that we are considering, which are because the ions and electrons are diffusing at the 

same rate. We can say that V i is approximately equal to V e. 
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I have written it down for you. V i is approximately equal to V e, the number density we 

can assume to be approximately equal and we put it equal to n. But the product since ion 

mass is much greater than m e. The electron mass, the product m i nu i is much greater 

than m e nu e. 

So, we neglect the term m e nu e V e in this equation and we put n i equal to n e equal to 

n and we put V i equal to V e equal to V. So, we are left with this equation. Minus m i nu 

i V minus k B upon n multiplied by T e plus T i within brackets grad n is equal to 0. This 

is a much simpler equation compare to the earlier one and from here, we can 

immediately write a solution for the velocity. 
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I have repeated the equation in this slide for ready reference. The expression for velocity 

then becomes, V is equal to minus k B T e plus T i upon m i nu i n grad n. So, you can 

readily see that the diffusion coefficient for ambipolar diffusion is simply D is equal to K 

B T e plus T i upon m i nu i. This is a simple enough expression for the diffusion 

coefficient for ambipolar diffusion. 
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Now, using the information, we using whatever we have learnt so far, we can write down 

the continuity equation or the diffusion equation and try and solve it for some special 

cases. 

As you know the continuity equation is, you are familiar with it is del n upon del t plus 

del dot F is equal to 0. This is a scalar equation, because the divergence of F is a scalar. 
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Now, a little while ago, I have shown you that for plasma weakly ionized plasma. In this 

special case, when e is equal to 0, the electric field is 0, which happens to be the case for 

ambipolar diffusion also. The flux is simply negative of diffusion coefficient multiplied 

by the density gradient. This is the fick’s law. 

And so, if we substitute this expression of the flux from fick’s law, what do we get? We 

get del n upon del t minus D del square n is equal to 0. Again, this is a Three-

dimensional equation and it can be solved for special cases. And, one of the interesting 

special cases, there are there are many cases that have been taken up in the reference 

books, that I have sighted. F F Chen as well as fitzpatrick and any other text book on 

plasma physics that you will be studying in this course. But we have for this particular 

lecture, I have chosen a special case of laser produced plasmas. 



(Refer Slide Time: 46:58) 

 

So, for a very special case of laser produced plasma, we will solve the equation and 

obtain an expression for the diffusion coefficient. What happens in this process? You 

have a thin foil, which is shown on the screen and you bombard that with laser beams, 

what happens is that a plasma plume is produced. This is the plasma plume that is 

produced, when laser beams bombard a thin foil. 

What are we interested in now, is how the plasma particles will diffuse in this plasma 

plume? What will be the diffusion time? This is a case of a weakly ionized plasma. This 

is a kind of a Gaussian density distribution. 
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And we can solve the equation for by assuming a distribution for the number density, 

which goes as n is equal to n 0 e raise power minus X square by a square. This is a 

reasonably good approximation for the plasma plume that is formed, when laser beams 

are bombarded on a thin foil. 

So, if we assume this, we have assumed a one-dimensional function for the number 

density, it is e raise power minus X square upon a square. So, this then turns into a one-

dimensional differential equation in time and length say X. So, del square n is simply D 

square n upon d X square, I have not written it here.  
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Del n by del t, I can write this equation may be here on the craft paper. Del n, this is the 

original equation, del n upon del t minus D del square n is equal to 0. We have assumed a 

one-dimensional expression for the number density. So, essentially we get what? Let us 

say, d n by d t minus D d square X d square sorry D square n by d X square is equal to 0. 

This is n. 

So all we need to do, is find out D square n upon d X square, I hope it is clear to you that 

this is N. We find out the value of d square n upon d X square and let us see what 

happens? So, what we need to do is, differentiate this expression with respect to X twice 

and this is what we get. These are three terms shown here. When you differentiate it once 

you get these 2 terms and differentiate it differentiated once you get minus 2 X e raise 

power minus X square by a square upon a square. This is first derivative. Differentiate it 

again, you get these 2 terms, right. 
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So, when you simplify, you can write it as this. n 0 n 0 e raise power minus X square 

upon a square is nothing but n here. n is n 0 e raise power minus X square upon a square. 

So, you get you just take this common factor out and put n 0 e raise power minus X 

square upon a square equal to n and within brackets, you are left with minus 2 upon a 

square plus 4 X square upon a 4. No, this should have been X square. 
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So, I am sorry, this should have been X square. Shall I write this equation again for you. 

So that, for the sake of correctness, del n upon del t is equal to D n 0 minus because it is 



the second derivative of this particular expression or the derivative of this. So, you 

differentiate X, you get this and you differentiate here, you get X square. So, this 

becomes minus 2 upon a square e raise power minus X square upon a square plus it 

should be 4 X square e raise power minus X square upon a square and the whole thing 

divided by a 4. 

So, this should be the expression and so we take e raise power minus X square upon a 

square out of the bracket, multiplied by n 0, we get n and within the bracket, we get 

minus 2 upon a square plus a second order term in X upon a 4. This is what, is the 

correct expression. 

Now, if we neglect the second order term 4 X square upon a 4 and retain only the first 

term, the constant term. We can write the derivative D n upon D t as D n minus 2 a 2 

upon a square and you can easily solve this equation, to get an expression of n is equal to 

n 0 exponential minus t upon tau d. 
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Tau D is nothing but the diffusion time is equal to a square upon 2 D, tau d is a square 

upon 2 D and we get that as a square 2 m nu upon K B T or nu a square upon 2 V 

thermal square, which goes as 1 upon square root t. The diffusion time in laser produced 

plasmas is 1 upon square root t. So, it is less, when the plasma frequency is high 

diffusion time and therefore, we say that hotter plasmas diffuse rapidly. 
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So, this is where, we come to an end of this discussion. Let me quickly summarize this 

for you. What we have done today, in our discussion on diffusion in weakly ionized 

plasmas, we have defined collision parameters like collision cross section, mean free 

path collision frequency and mean time between collisions. We have then defined 

diffusion parameters, mobility and diffusion coefficient and established fick’s law. We 

have solve the steady state equation of motion for un-magnetized plasmas and obtain the 

diffusion coefficient for ambipolar diffusion. 

Lastly, we have solved the diffusion equation to obtain diffusion time for laser produced 

plasmas. So, this is an important process of diffusion in weakly ionized plasmas, that we 

have studied today for ambipolar diffusion and laser produced plasmas.  


