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Today, we will continue talking about landau damping and growth of waves in plasmas. We 

shall discuss landau damping of a plasma wave, then landau damping of ion acoustic wave, 

bump in tail instability and ion acoustic instability.  



(Refer Slide Time: 00:48) 

 

The references for today’s talk would be three books; one by Stix, another one by Krall and 

Trivelpiece, and third one by F.F.Chen. 
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Let me recapitulate, what we were doing last time. We were considering the response of a 

plasma to a wave of potential phi is equal to A exponential minus i omega t minus k z. And what 

we have done was that we said that in the presence of this, the distribution function of electrons 



can be written as f 0 plus f 1; f 0 is the equilibrium distribution function and f 1 is the 

modification caused by the plasma wave of potential phi. Then, we solve the Vlasov equation for 

f 1 and we obtained an expression for the perturbed distribution function, which was is equal to e 

k phi divided by m omega minus k v z multiplied by delta f 0 by delta v z, here minus e is the 

electron charge and m is the electron mass. One may note here that those particles for which v z 

is equal to omega upon k, the denominator will go to 0 and they are called the resonant particles. 

The perturbation and f 1 will be very large and these are the particles which give rise to resonant 

wave particle interaction and are responsible for damping or growth of waves. 

Then, we introduced the density perturbation, which essentially is a triple volume integral of f 1, 

this f 1 into d v x d v y and d v z. At this stage, we introduced a quantity called one dimensional 

distribution function because when we integrate this f 1 respect to v x and v y, where the 

derivative of f 0 comes only through v z and there is no v z dependence here. Sorry no, v x and v 

y dependence here. So, this can be easily integrated and one introduced a quantity called one 

dimensional distribution function f 0, which was essentially integral double integral of f 0 over d 

v x and d v y. So, this f 0 is a function of primarily of v z, only of v z rather. 
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And in terms of this, one can obtain n 1 and we said that I will write n 1 as k square epsilon 0 

upon e into chi into phi, epsilon 0 is called free space permittivity and chi is called the 



susceptibility, let me put a subscript e. I think we put a subscript e because this designates 

electron susceptibility and the expression for chi e then, was is equal to minus e square upon m 

epsilon 0 k square integral minus infinity to infinity delta F0 by delta v z divided by v z minus 

omega by k and this was d v z already, I have written.Sorry, d v z I have to write, d v z. 

This is the expression we had written last time and for the case of Maxwellian distribution 

function, Maxwellian distribution means I choose F 0 as density of electrons per unit volume 

divided by pi to the power 3 half, sorry 1 half multiplied by v thermal into exponential minus v z 

square by v thermally square. So, for this case we found that susceptibility becomes simple, is 

expressible into z functions and z function I defined as z of xi is equal to 1 upon root pi, this goes 

from minus infinity to infinity exponential minus p square upon p minus xi d p. 

And the evolution of this integral has to be done following the Landau’s prescription. So, what 

we do here, if I plot real v z, we treat or p we treat as a complex quantity. So, real part of p be 

plot here and imaginary part of p, we plot here and then we carry out the integral along the 

horizontal axis because there is a pole at xi. So, this is the pole at xi, but the integral has to be 

like this. It has to go round the pole. So, this is the integral line integral. So, following Landau’s 

prescription, one can evaluate this integral and people have indeed evaluated this integral, free 

run (( )) have carried out this study. z function always has a contribution due to this pole. 

(Refer Slide Time: 07:42) 

 



And in the limit, when xi is much bigger than 1, this becomes, this z function of xi is 

approximately equal to minus 1 upon xi minus 1 upon 2 xi cube minus 3 upon 4 xi to the power 

5 plus i root pi into exponential minus xi square. This is the expression for xi. In the limit, when 

xi is much bigger than 1 and in the other limit, when xi is much less than 1. You can write z 

approximately equal to minus 2 xi etcetera plus i root pi exponential minus xi square and this 

factor is nearly 1. So, this like i root pi. Well, in terms of this z function the plasma susceptibility 

was susceptibility chi e, we had written was, is equal to 2 omega p square upon k square v 

thermally square 1 plus omega upon k v thermal into z function of omega upon k v thermal and 

the dispersant relation was for the plasma wave 1 plus chi e is equal to 0. 

Now, I would like to simplify this by presuming that the phase velocity of the wave is bigger 

than v thermal. So, omega by k is v thermal is greater than 1. xi implies here is the argument of z 

function, which is omega by k v thermal. So, well let me mention here that xi I am talking about 

is omega upon k v thermal. So, in the limit, when omega by k v thermal is bigger than 1, I can 

use this expansion and when I carryout this expansion, chi e turns out to be rather simple. Let me 

write down this expression or rather this expression I will write down. 
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So, if I write this, this takes the following form. 1 minus omega p square by omega square minus 

omega p square by omega square into 3 by 2 k square v thermally square upon omega square 



plus the imaginary part i root pi omega 2 omega p square divided by k square v thermally square 

into exponential minus omega square by k square v thermally square is equal to 0. I forgot to 

mention that v thermal is related to electron temperature by this relation, 2 T e upon m, where t is 

the electron temperature, m is the electron mass. 

Well, if omega is substantially bigger than over k v thermal, this term is quietly small, but it still 

significant. So, this is a equation, which you can solve for omega and I can write down omega is 

equal to a real part of omega plus imaginary part of omega, but this turns out to be negative sign. 

So, I write down simply minus here into gamma and presuming that omega r is bigger than 

gamma. You can equate the real imaginary parts of this term to 0 separately. So, real part of 

omega turns out to be omega r turns out to be equal to omega p square, this is equal to this square 

plus 3 by 2 k square v thermally square, this if you equate this equal to 0, you will get omega r 

actually. This expression you will get. 

And nearly, approximately because I am taking this term to be small as compare to this one and 

imaginary part turns out to be gamma, which we call the damping rate, it turns out to be root pi 

omega p square into omega divided by k, this should be k square v thermally square. Actually, 

this is cube here and this is k cube v thermal cube multiplied by exponential minus omega square 

upon k square v thermally square. You may note here that the damping is a function of frequency 

frequency, this omega is omega r actually. But we can suppress the subscript r implying that it is 

implicit. So, the frequency you may note here, if I plot omega r, omega r as a function of k. 

Suppose, omega p is here, at k is equal to 0, omega equal to omega p and that is we plot here, 

this will go something like this.This sort of variation you will get. 

Now, if you are too close to omega p, then k will be very small and when k is a small this 

quantity is very large. So, damping rate will be negligible. So, if I plot here damping rate, 

damping rate, I will call as gamma as a function of k because when k changes, omega 

correspondingly change changes. So, use a proper value of omega from this graph and use this 

here, then plot gamma has a function of k. You will find that when k becomes comparable to 

omega by v thermal. In that case, this term is nearly unity and this is huge. So, damping rate is 

very tiny and becomes very large, when k becomes comparable to omega p by v thermal. 

Suppose, omega p by v thermal is here. 



This is omega p upon v thermal. I am varying this quantity k here. So, this is the point where 

omega k becomes omega p upon v thermal. The damping is very huge here. So, it starts from 

here and then it increases rapidly. The scale for this is different than the scale for omega, but this 

could be quite large. Obviously, my approximation fails here; it is not valid up to this point. It is 

valid only up to somewhere here, because as I mention to you, I have already assumed that 

omega r is bigger than k square v thermally square. So, this was my assumption. So, I cannot go 

close to unity here, i should be here may be half or something one-third. So, but it still the 

damping is strong as you move to shorter wave length or larger values of k and this is a collision 

less damping. It will be useful to, look at the wave number of phase velocity of the wave over the 

distribution function. If I plot here f 0 as a function of v z, for Maxwillian plasma this goes like 

this. 
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This is my Maxwillian distribution function and my thermal velocity is somewhere here. This is 

my thermal velocity somewhere here and my phase velocity of wave is somewhere here. So, 

suppose my omega by k is here, depending on the value of k. This is these are the particles which 

are called resonant particles. So, in this neighborhood you are expecting resonant interaction of 

waves with particles, this is the range. What will happen? The particles which are on the left of 

this omega by k point, these particles are moving slower than the wave. The particles which are 

ahead of it, they are moving faster initially. But as I mentioned that as the wave grows these 



particles loose energy. The faster particles loose energy and the slower particles gain energy. 

Consequently, particles from here to here move and there is a Plato created there. 

So, the distribution function appears becomes like this. f 0 if I plot, v z here the distribution 

function I have plotted here. So, in this a some Plato is created here, this is the range v g. Sorry, 

omega by k is here. So, a Plato is created horizontal becomes flat. Once this becomes flat, then 

there is no growth. Because there is no slope in f 0. So, Landau damping will be a transient 

phenomenon. After a little while, when this flattens, there will be no damping. Obviously, if the 

electron electron collisions restore the distribution function to be Maxwellian, then this will be 

ongoing process. 

So, laminar waves will damped up to a point and beyond that point the damping will stop. When 

the particle distribution function has become like this, until or unless there is a restoration of 

Maxwellian form of the distribution function. It is collision new. So, this is from physics we 

have learnt. Obviously, the waves of larger k, this omega by k point will be closer here and then, 

the number of particles in the distribution function are more. So, there are more and more 

resonant particles and there will be a stronger damping. So, when omega by k is very large. 

When k is very tiny, then there is hardly any particles and there is very little damping of the 

waves. So, one can see this. 
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Now, let me examine the ion acoustic wave in the presence, well with kinetic effects. So, ion 

acoustic wave from fluid theory, we had learnt that this is a wave of frequency omega is equal to 

k c s upon 1 plus k square c s square upon omega p i square to the power half, where c s is under 

root of T e upon m i, where m i is the ion mass and omega p i is the ion plasma frequency, which 

is defined as n 0 e square upon m i epsilon 0 under the root. So, a wave of frequency omega with 

wave number k will have a phase velocity omega by k, which is less than c s, depends on how 

close k c s is to omega p i but the highest value of omega is less than omega p i. So, if I plot a 

graph here omega versus k c s and suppose, omega p i is here, then this goes like this. It 

saturates. But please remember, in the case of ion acoustic wave the velocity is much less than 

the electron thermal velocity, 50, 60 times or 100 times a smaller. 

However, the ion velocity may be comparable to the velocity of the wave. Especially, if my k is 

large, then omega by k could be significantly smaller as compare to c s. When k c s becomes 

comparable to omega p i, there is a significant reduction. So, the phase velocity of this wave v 

phase, which is defined as omega by k is less than c s, because there is a factor underneath. So, it 

is possible that larger k waves will have a thermal velocity comparable to ion thermal velocity. 

Because the velocity is if T e is T i are same, then thermal velocity will comparable to c s and the 

wave will be strongly damped. So, here the damping is expected to come from the ions. So, what 

you do? You look at the same expression.  
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For as we had seen for the electron susceptibility, you can write down the expression for ion 

susceptibility. Electron susceptibility we had written was 2 omega p square upon k square v 

thermally square 1 plus omega upon k v thermal of electrons plasma dispersant function of 

omega upon k v thermal, but we are we are considering the limit when omega is much less than k 

v thermal, then this quantity is negligible. So, this is primarily equal to 2 omega p square upon k 

square v thermally square and this you can easily see, is equal to omega p i square over exactly 

same as k square c s square, because omega p i is square continuous a mass, 1 upon mass, v 

thermal square also continuous 1 upon mass and it cancel out. 

So, whether you put a omega p or p i or c s the same thing happens. So, this is the value of chi e. 

How about the ion susceptibility? Ion susceptibility chi i is by similarity 2 omega p i square 

where, omega p i is the ion plasma frequency upon k square v thermal ion square and then this 

becomes 1 plus omega upon k v thermal of ions z function of omega upon k v thermal of ions. 

Here, I am assuming the plasma to be Maxwellian. 

This term again here, for sound waves we are expecting omega upon k v thermal of ions to be 

bigger than 1. So, in the large amplitude approximation I can expand this plasma dispersant 

function z function and in that case, chi i turns out to be approximately equal to minus omega p i 

square upon omega square that is nearly the real part and imaginary part is simply is equal to 

plus 2 omega p i square upon k square v thermally square into i root pi. So, I will put here, i root 

pi omega upon k v thermal of ions and exponential minus omega square by k square v thermal 

ion square. Well so, chi has this is the ion susceptibility, this not the imaginary part. This is real 

part and a imaginary part. Real part of this and chi e will determine the real frequency and this 

will give rise to damping of the wave. 



(Refer Slide Time: 26:21) 

 

So, let me write down the dispersant relation. The dispersant relation for the sound wave is 1 

plus chi e plus chi i equal to 0. chi i essentially is characterizing the perturbation in the electron 

density, then you multiply this chi by phi and this characterizes the modification in the or 

perturbation in the ion density by the wave and wave we are considering like this, A exponential 

minus i omega t minus k z. So, this is the dispersant relation for the sound wave or ion acoustic 

wave and this turns out to be 1 plus omega p i square upon omega, sorry k square c s square, this 

is the electron susceptibility and ion susceptibility is omega p i square upon omega square plus i 

root pi and then, you get 2 omega p i square upon k square v thermal i square omega upon k v 

thermal i multiplied by exponential minus omega square upon k square v thermal i square. 

The real is equal to 0. If I forget this, I get the real part of frequency from here. But when this is 

included, I can write down omega is equal to omega real minus i times some damping rate, 

omega r just when obtain from here is the same as I have given before by fluid theory. But this is 

the additional term that you get because of damping due to ions. 
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Let me write down the explicit expression for omega r and the damping rate. omega r is k c s 

upon under root 1 plus k square c s square upon omega p i square and damping rate turns out to 

be root pi, it turns out to be I guess omega 4 upon k cube v thermal i cube exponential minus 

omega square by k square v thermal i square. This is called ion damping. So, your phi is the 

amplitude of the wave, phi modulus if you plot will go as exponential minus gamma t. So, it will 

damp out. Now, if I plot the distribution function for electrons and ions, what I will get is this. If 

i plot here v z and put the distribution function for electrons and ions separately, the ion 

distribution function will be like this. Let me graph by different color. The ion distribution 

function will be like this and the electron distribution function will be like this. Let me write it by 

different color and my wave velocity is somewhere here; omega by k is somewhere here. 

So, the slope of the electron distribution function is very tiny and that does not give rise to any 

damping of waves. But if the slope of the ion distribution function, this is ions and this is the 

electrons, I am plotting here f 0 versus v z. So, these are the ions here, which are responsible for 

the damping of the wave. It is very important to know that because especially, when you are 

talking of wave frequency less than omega p i. So, when omega is significantly less than omega 

p i may be one-third or less, then omega is around k c s and this is the factor here, which is 

responsible for damping. It can became quite large, the damping rate turns out to be,for low 

frequency range, gamma is of the order of root pi omega T e upon 2 T i cube exponential minus 



T e upon 2 T i, this is very important. This tells that unless T e is much bigger than 2 T i, that 

will be very strongLandau damping of ion acoustic waves. 
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So, T e must be much bigger than 2 T i for weak damping of these waves. A plasma in which 

temperature of electrons is much bigger than the ion temperature is called non isothermal plasma 

non isothermal plasma. But certainly there are plasmas in which temperature of ions is much less 

than the electron temperature and the ion waves are quite weakly damped. Well this argument is 

true, when we are talking plasmas with singly ionized ions. In plasmas, where ions are doubly 

ionized or they have charge 2 e or 3 e or 4 e, then this condition changes. But those details are 

not relevant at the moment. I just wanted to emphasize that thermal effect, because damping of 

waves. However, with a suitable distribution function, they can give rise to instabilities as well. 

Physically what would where would you except the instability. A simple example is the case of a 

bump in tail distribution. I think I will write this on a separate sheet. 
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Let me talk about the bump in tail distribution and the instability or the growth of the wave 

arising because of that is called bump-in-tail instability, bump-in-tail distribution function. So, 

suppose we have a plasma, which has a distribution like this. I call F 0, suppose is a function of v 

z if I plot, I get this kind of thing and this goes like this. So, there is a bump in the tail of the 

distribution function and in case your wave phase velocity were lying somewhere here, the slope 

is positive here and the wave velocity, the wave that you are considering has a phase velocity 

somewhere here, then the slope is positive and the imaginary part of omega will be positive and 

that will give rise to growth of the wave, because here the number of particles moving faster than 

omega by k are more and the particles moving slower than omega by k are less. So, more 

particles are moving faster than the wave and they will give energy to the wave. So, wave will 

grow. 

This kind of distribution you can easily write down as a sum of a Maxwellian distribution plus 

drift in Maxwellian distribution. So, I can write down this, F 0 is equal to Maxwellian 

distribution plus drifting Maxwellian and so, I can write down Maxwellian. I will write down 

simply F 0 M plus F 0, the drifting Maxwellian I will call F 0 b, may be something sort of a 

drifting particles or beam particles moving. Actually, I can call this, actually F 0 either m or F 0 

b, the bulk plasma particles. 



So, bulk either the plasma electrons are having Maxwellian distribution and some particles are 

moving with drifting Maxwellian. So, let me write down these expressions. Maxwellian 

distribution function in one dimension, I can write down as n 0 upon pi to the power half into 

thermal velocity of the plasma electrons exponential minus v z square upon v thermally square. 

So, these are my electrons of the bulk bulk electrons of the plasma, but there are some tail 

electrons, I will call them F 0 b. Suppose, this is equal to n 0 upon pi to the power half, their 

thermally spread of energy of velocity is suppose less, v thermal b is the thermal spread, 

exponential minus v z minus v 0 b square divided by v thermal b square. 

So, I am writing two distribution functions, sum of 2. This is Maxwellian from here to here. This 

as a peak at v z equal to 0 but this is has a peak at v z is equal to v 0 b. So, this tense of the peak 

from this point is v 0 b.And v thermal b is called the, is I can write down v thermal b thermal 

velocity of beam electrons, or drifting electrons, which I can define as 2 temperature of the beam 

electrons upon mass of the beam electrons and v thermal is 2 T e upon m but T e and t b could be 

very different. So, this is the beam part, this is the bulk part, bulk electrons or plasma electrons. 

If I use this in the original expression for density perturbation, you get the density perturbations. 
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And I can define two quantities. Susceptibility of the electrons turns out to be one comprising the 

Maxwellian part contribution plus 1 having the beam contribution or drifting Maxwellian 



contribution. There are two susceptibilities. Obviously, density perturbation of the whole system 

is k square epsilon 0 upon e into susceptibility of the electrons into phi. So, this chi is a very 

important quantity. Now, this has a sum of 2 terms. one from Maxwellian electrons and one from 

drifting Maxwellian electrons called beam electrons and what happens if you work out little bit, 

just follow the old procedure. 

Chi m is the same expression as before, which is 2 omega p square divided by k square v 

thermally square into 1 plus omega upon k v thermal z function of omega upon k v thermal, 

whereas, chi m becomes chi b is different, this is twice omega p b square. I may forgot to 

mention that the density of electrons that I had written earlier. The drifting electrons may have a 

different density, I will call n 0 b. So, if I take this density n 0 b, then the corresponding plasma 

frequency will be omega p b upon k square v thermal of the beam electrons square 1 plus omega 

upon k, this be turns out to be omega minus k v 0 b upon k v thermal of the beam. This is the 

modification, here is omega only and this is omega minus k v 0 b, which is called Doppler 

shifted frequency of the wave has seen by the particles and this is omega minus k v 0 b upon k v 

thermal. So, this total susceptibility of electrons has two terms one has a important term with 

Doppler shifted frequency and the other one has just a frequency omega. 

What you can do? For the instability, you are a or certainly looking for a case, where beam 

velocity is more than or comparable to omega by k. But this is much bigger than v thermal of 

electrons or v thermal of the beam electrons that is the case of interest. So, in that limit, this 

simplifies the great deal. It becomes of the order of minus omega p square by omega square, 

simply this term and well actually, let me define omega p b here, this is a important quantity, 

omega p b is I have defined as n 0 b, the drifting electron density, e square upon m epsilon 0 

under the root. 

Please note that, in this limit when the beam velocity is much bigger than the thermal velocity of 

electrons or the thermal velocities spread of the beam distribution function, in that case I can 

simplify these two expressions a great deal. So, chi m turns out to be simply this, chi be will have 

a real part plus a imaginary part. The real part will be small as compare to the real part of chi m, 

because if the density of beam electrons is small, then I expect this to be a small modification. 



But the major contribution will come in the imaginary part. So, this is what I am going to do 

here. 
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I am going to write this imaginary part of this term and my dispersant relation is 1 plus chi m 

plus chi b is equal to 0 and when you substitute, this becomes 1 minus omega p square by omega 

square, due to the second term and chi b I will simply write only primarily imaginary term, 

which is equal to plus 2 omega p b square upon k square v thermal, beam velocity square into i 

root pi omega minus k v 0 b upon k v thermal of the beam into exponential minus omega minus 

k v 0 b square upon v thermal square multiplied by k square, this is b. This is equal to 0. So, this 

imaginary part because there is a small, well I have written in the limit when beam density n 0 b 

is significantly less than the plasma density, in that case real part of the beam contribution to 

susceptibility can be ignored as compare to the real part of the electron plasma electron 

contribution. 

So, if I ignore this, I get omega equal to omega p, but because of this term omega, I can write 

down as omega p minus or plus rather i times growth rate, just substitute it here and treat equate 

the real imaginary parts, you will get the growth rate. So, growth rate turns out to be equal to, let 

me just write down this expression. It turns out to be root pi into v 0 b minus omega by k upon v 

thermal of the beam, thermal spread in velocity of the electron beam into omega p b square upon 



k square v thermal beam square exponential minus v 0 beam minus omega by k whole square 

divided by v thermal beam square. So, whenever the beam velocity is faster than the phase 

velocity of the wave, more electrons are moving faster than the wave and hence the feed energy 

into the wave and wave grows. So, this is the growth of the plasma wave, at the expense of 

energy of the electrons in the tail. So, when there is a whenever there is bump in the tail, 

whenever there is a positive slope in the distribution function, you will get this instability So, 

plasma waves are often driven unstable, whenever there is a stream of particles moving faster 

than the thermal velocity of electrons plasma electrons and they create a bump in tail and you get 

a instability. This is a very important instability in plasmas. 

(Refer Slide Time: 47:50) 

 

I would also like to talk to you about another instability; you can drive the ion acoustic waves 

also unstable by an electron current. So, let me just mention finally, current driven ion acoustic 

wave or simply ion acoustic instability. This system is rather simple. If you take a plasma 

somewhere and put two electrodes to which we will be certainly apply potential difference, pass 

a current in the plasma. The distribution function and there is a pump here, so that you can create 

a vacuum. So, when you have a plasma at low pressure or gas field in at a low pressure and you 

created discharge, you produce a plasma but the plasma electrons also have a drift, they are 

drifting towards the cathode anode and the distribution function can be reasonably taken to be 

Maxwellian, drifting Maxwellian. 



So, if I take the plasma electron distribution function like density of electrons pi to the power 3 

by 2 v thermal cube exponential minus v minus, suppose the electrons are drifting with drift 

velocity v 0 in the z direction upon v thermal square. So, this is the distribution function, then if 

you work out the and ion distribution function usually in such plasmas can be taken to be f 0 of 

ions as n 0 upon pi to the power 3 half v thermal of ions cube exponential minus v cube upon v 

thermal cube of, this is the distribution function of ions, this is i v thermal i. 

In that case, the distribution functions will look like this. If I plot here the distribution function 

for electrons, the electron distribution function will not have a peak here, it has a peak at v equal 

to. So, if I plot this as a function of v z and f 0 here, the distribution function for electrons will be 

like this. So, the peak of the distribution function is somewhere here. So, if I have my omega by 

k just below the peak, here this peak is shifted at distance v 0, the distance from here to here is v 

0. So, for v 0 greater than omega by k the slope of the electron distribution function is 

positive.So, there are more electrons moving faster than the wave and few are moving slower 

than the wave and there will be a instability. Mathematics is a trivial for this case. 
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Just, let me write down we are having the dispersant relation, 1 plus electron susceptibility plus 

ion susceptibility equal to 0 and the electron contribution turns out to be chi e, which is 2 omega 

p square upon k square v thermal square into 1 plus omega minus k v 0 upon k v thermal of the 



plasma electrons into z function of omega minus k v 0 upon k v thermal.Since, for sound waves 

k v thermal is too huge as compare to omega or omega minus k v 0 too huge. So, this quantity, 

real part of this quantity is negligible imaginary part. So, this becomes approximately equal to, 

this is becomes equal to omega p i square upon k square v thermal c s square and this becomes 1 

plus i root pi into omega minus k v 0 upon k v thermal and if I take ions to be cold, so in the limit 

when T e is much bigger than 2 T i, ion susceptibility is nearly equal to minus omega p i square 

by omega square. So, that the ion damping can be ignored. So, in that limit if I just substitute this 

chi e here and chi i here, you will get instability, whenever v 0 is more than omega by k and it is 

very trivial to get the dispersant relation. 
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You will get here the dispersant relation will be have omega is equal to omega real plus i 

gamma, omega real is the same as you obtain from the fluid theory, the real frequency of a sound 

wave, which is k c s upon 1 plus k square c s square upon omega p i square under root and the 

growth rate gamma turns out to be equal to root pi omega cube upon 2 k square c square into 

omega minus, sorry this is v 0 minus omega by k upon thermal velocity of electrons. 

As I mentioned omega by k is like c s, v 0 has to be slightly more than c s. So, this quantity is 

quietly small but significant. So, whenever omega is of the order k c s growth rate is comparable 

to omega into this ratio v 0 minus omega by k upon v thermal or this like c s, this is maybe I 



would say one-fiftieth but still it quite significant. So, this is let me write this as omega into v 0 

minus sound velocity upon thermal velocity of electrons. So, this is still significant. So, sound 

waves have been found to be generated in plasmas carrying currents, even simple discharges will 

produce plasma waves, sound waves. 

Sound waves are like acoustical phonons and solids. In a solid, whenever the sound waves travel, 

we say that acoustical phonons exist. So, whenever you apply a d c electric field to a conductor, 

the electrons in the drift they suffer collisions with phonons and that gives rise to resistivity. 

Similarly, in plasmas, if you pass a current in a plasma and sound waves are generated, then 

these waves can also give rise to plasma resistivity, which could be significantly higher than the 

resistivity due to particle collisions, electron ion collisions or electron neutral collisions. And I 

think in our next lecture, we shall talk about the effect of such instabilities on resistivity. I think, 

I would like to stop at this stage.Thank you. 


