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Today, we will continue our discussion of Vlasov theory of plasma wave, and we shall 
discuss Landau damping and growth of waves. First, we will drive a dispersion relation 
for plasma wave, then deduce the damping rate, and in case of a drifting Maxwellian 
distribution function or bump in tail, we will examine the possibility of wave 
amplification giving rise to instability. We will also use to discuss the growth of ion 
acoustic wave by a drifting electron distribution function; and we discuss the 
consequence of such instabilities.  
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The references for today presentation are the same as before as in the last lecture; three 
books by Stix, Krall and Trivelpiece and by F. F. Chen. . 
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Let me recapitulate what we were doing last time. We were examining the possibility of 
having a plasma with equilibrium distribution function F 0. This was the equilibrium 
distribution function, perturbed by a small perturbation f 1 self consistently with the 
creation of an electric field, which we wrote down as having E z is equal to minus e sorry 
minus delta phi by delta z, and we were considering that f 1 was uniform in x and y. So, 
it was a function of t, function of z, and function of v x, v y, v z in general; phi was a 
function of e and z. So, a small initial perturbation n, the distribution function and self 



consistent electric field creation in the system; how about this perturbed perturbation will 
evolve in time? Will it dump out or will it continue to grow? Let there was a issue I 
would I was think to address. 

For this purpose, we had introduced fourier transforms, and we introduced a quantity 
called fourier transform of f 1 f 1 k that was in z. So, this was I had written as 1 upon 
under root 2 pi and integral f 1 exponential of minus i k z dz minus infinity to infinity. 
This was the fourier transform of f 1. And fourier transform of phi, I will call as phi k is 
equal to 1 upon root 2 pi integral minus infinity to infinity potential multiplied by minus 
i k z d z. 
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So, what we did was that, we had a linear linearized (( )) equation, which was of this 
form delta f 1 by delta t plus v delta delta z of f 1 is equal to minus e delta delta z of phi 
upon electron mass minus e is the electron charge multiplied by delta f 0 by delta v z and 
when I multiply this equation by on both sides by exponential minus i k z dz and carry 
out the integration over z from minus infinity to infinity. I got an equation for f 1 k and 
that equation was, let me write down that equation f 1 k was, delta f 1 k delta t plus i k v 
z f 1 k is equal to minus e upon m i k phi k delta f 0 by delta v z. So, this is the equation 
governing the fourier transform of perturbed distribution function. And this phi k is 
related to f 1 k through the poisons equation, which was phi k is equal to e upon k square 
epsilon 0, where epsilon 0 is the free space permittivity and triple integral f 1 k dv x dv y 
dv z. 



You may note one thing in here, that I can easily multiply this equation by dv x dv y and 
integrate over v x and v y. because there is no derivative or no other coefficient having v 
x and v y so, it is very simple. So, I can easily multiply this equation by dv x and dv y 
and integrate after all and I can let me define a quantity f 1 k as f 1 k dv x dv y double 
integral. So, f 1 k dv x dv y then, this whole double integral will reduce to simply f 1 k. 
So, I can write down this is simply e upon k square epsilon 0 f 1 k into dv z and this f 1 k 
will depend only on obviously is on time k and v z, that is all dependence. So, in order to 
obtain an equation for f 1 k, I multiply this equation by dv x dv y and integrate and the f 
0 when I integrate over dv x dv y, I define capital F 0 as f 0 dv x dv y. So, this is called 
one-dimensional distribution function and F 0 now depends only on v z, because v x v y 
dependence have been integrated over. So, my equation governing F 1 would be F 1 k 
would be delta delta t of F 1 k plus i k v z F 1 k is equal to minus e upon m i k phi k delta 
F 0 by delta v z. So, it becomes a one-dimensional equation as for as, f is concerned its 
velocity phase dependence is concerned. 
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Now, to get read of this time dependence, we carry out a Laplace transform. Laplace 
transform has to be carefully done. So, I write down F 1 k, which is a function of time, 
besides other dependence, it depends on v z also. I write down this quantity as F 1 k, let 
me m omega. Now, this a function of v z of course is there, exponential of minus i 
omega t d omega, where F 1 k omega is called the fourier transform of F 1 k. So, I will 
write down F 1 k omega is equal to F 1 k, which is a function of t and v z, exponential of 
i omega t dt sorry this is d t, this goes from 0 to infinity and this 1 upon 2 pi in here 



What I am saying here is, this Fourier transform I define as the time integral of my 
distribution function multiplied by exponential i omega t. And this F 1 k may have a 
dependence on time which may go as exponential of say gamma t. Now, if x this as a 
exponential of I gamma t or gamma t of this form, then the integration over omega 
obviously, I expect this goes goes from minus infinity to plus infinity but then omega 
should be allow to have a imaginary part large enough. So that, the exponential decay 
part of this is more dominant than the exponential growth part of this. Otherwise, this 
will over flow because in this integral if omega has a large imaginary part, it does not 
have a large imaginary part but this has then a time goes on this integral will overflow. 

So, this integral should not be over flowed and hence this omega should be allowed to 
have a imaginary part, which is substantially large, because any imaginary part will 
omega will be minus. So, suppose I write here this omega as omega real plus i times 
omega imaginary then, this term will goes as exponential minus omega i into t. What I 
want, that this integral should not diverge. So, whenever this perturbation has a time 
dependence of this form. The time dependence of this exponential part should be more 
dominant than this one, so that this integral converges otherwise, this will not converge. 

So means, this is defined only for in that for those values of omega for imaginary part is 
substantially bigger than gamma. That is that is a important. So, when I carry out this 
limit, I must be careful, this goes from minus infinity to infinity. but it should have a 
substantially large imaginary part plus i times some imaginary parts suppose alpha plus i 
times alpha alpha is like give any quantity greater than gamma. That is important. 
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So, if I have to carry out this, if I write down this suppose, I plot real part of omega here 
and imaginary part of omega here and I find that the Fourier transform has or suppose, 
this is the value or these are the values any values suppose, this is the value imaginary 
part omega F 1 k suppose has a dependence on time which is equivalent to imaginary 
part omega equal to so much like gamma. Then, my line of integration should be here. 
This is the line of integration of omega integral from minus infinity to plus infinity but at 
a height alpha. This is the primary the thing means, any singularity in the Laplace 
transform should be below the line of integration, this what I have to say. 

So, when we carry out the inverse Laplace transform, we should be careful about it, but I 
think, we will refer to this refer this discussion to a little later in stage. Let me first go 
back to our Fourier transformed (( )) equation. What I do, multiply the (( )) equation (( )) 
equation for F 1 k by exponential of i omega t dt and carryout the time integral. Let us 
see, the first term in the equation is delta delta t of F 1 k multiply this by f i omega t dt 
and integrate. let us see, what do I get, I am doing this from 0 to infinity. This quantity 
will be first integral of this quantity will be F 1 k and F 1 k as I mentioned depends on 
time and v z this has to be obtained at 2 limits sorry multiplied by exponential of i omega 
t. The limits are from 0 to infinity minus differential of this and integral of this. So, it 
becomes F 1 k and differential of this is i omega exponential of i omega t dt 0 to infinity.  

As, I mentioned to you omega has a substantial large imaginary part. So, when t goes to 
infinity, this vanishes. So, at the upper limit this entire quantity goes to 0. Only at the 
lower value this will survive and at that this quantity is one and this is F 1 k 0 v z. How 
about this integral, if I take I omega outside then, this is simply the Laplace transform of 
F 1 k. So then, this integral is simply sum of two terms. This integral delta delta t of F 1 
k exponential of i omega t d t, which was from 0 to infinity is equal to minus F 1 k at 0 v 
z minus second integral was simply F 1 k omega into i omega. And then the (( )) 
equation becomes simple, its simply gives you F 1 k omega is equal to simply simplify 
this, e upon m omega minus k v z k, here phi k there into delta f 0 by delta v z. So, we 
got a simple expression for f 1 k. 
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Now, let me go over to the expression for phi k, I have a so, if I multiply phi k equation 
also by exponential i omega t dt and integrate, I will get phi k omega is equal to e upon k 
square epsilon 0 multiplied by dv z integral from minus infinity to infinity multiplied by 
F 1 sorry this is capital F 1 this is capital F 1 capital F 1 k omega multi[ply]- this is all. I 
think I forgot to write this term, this is also a term there. So, when I multiply this take 
this on the right hand side it becomes plus actually, when this goes on the right hand side 
it becomes minus 1 up[on]- yeah this becomes F 1 k 0 v z divided by omega minus k v z 
into I. 

This term, I have taken into account. I had forgotten to take this into consideration so, the 
I should add. Now, these 2 equations this is phi k omega also here. My suggestion is that 
or rather what I want to do now. I would like to use this value of F 1 k omega here and I 
will get two terms, one on the right hand side will contain a phi k omega that I will 
combine with this term and I will get another term having this integral dv z of this 
quantity. 
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So, let me write down phi k omega I get, is equal to some numerator divided by the 
denominator. Numerator turns out to be an integral, which is if I simplify this is e upon k 
square epsilon 0 into i k common and then you will get a integral of this form F 1 k at 0 v 
z dv z upon v z minus omega by k minus infinity to plus infinity and the denominator of 
this is it is 1 minus, let me just see the denominator is rather simple. Let me write down 
this expression. This turns out to be equal to omega p square upon k square into 1 upon n 
0 I would say here n 0 the number of electrons per unit volume into minus infinity to 
infinity delta F 0 upon delta v z upon v z minus omega by k. 

So, you get the Fourier Laplace transform of wave potential as a ratio of two quantities N 
and D and here omega p I have defined as n 0 e square omega p square is n 0 e square 
upon m epsilon 0. but because there was no n 0 explicitly there. So, I have multiplied 
denominator numerator by n 0 and this is how I have written. But obviously, 1 n 0 is 
contained in the distribution function F 0. The important contribution of landau lies in 
understanding this. The thing is that, whenever you carry out the Laplace transform, you 
have to integrate to obtain phi from phi k omega, I have to carry out the inverse Laplace 
transform or integration over D omega from minus infinity to plus infinity above all the 
poles, and that is a complicated integral. Landau says that, if D equal to 0, hence the 
singularities. Now obviously, this is integral, this can be 0, if it is 0 for some values of 
omega after omega is a range and complex frequencies. So, for some values of omega 
this will be 0. 

Those values of omega for which D is 0 are called poles of phi k omega and the 
maximum contribution to an integral will arrives from those poles. but unfortunately 
your Laplace transform is not defined for those frequencies of complex omegas at which 
this becomes 0. So, then you have to carry out what we call as the analytic continuation 



of the of this integral means, of this Laplace transform has to be this is essentially 
quantity defined in complex omega plane. So, you want to define Laplace transform in a 
domain where similarities lie. So, let me draw a graph here. Suppose, I plot here real part 
of omega and imaginary part of omega here, D the denominator of the Laplace transform 
suppose becomes 0 at some point here, it may become 0 somewhere here. Then, your 
integration has to be carried out on this line; this is the contour for omega. Integration 
has to be carried out here, this is contour one. 
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Landau says that, if there are no poles between here and this line. So, if I choose this 
suppose, this is another path of integration, this is path two because my please always 
keep this in view. I want to sorry I want phi k at time t that I write in terms of phi k 
omega exponential minus i omega t d omega ranges minus infinity plus epsilon sorry 
plus i alpha to infinity plus i alpha this length is i alpha from here to here and this is 1 
upon 2 pi. So, in order to carry out this integration over this line in the complex plane 
like this, landau says that it will be much easier to carry out a integration of this over a 
another path, which is far below the imaginary omega equal to 0 axis. This is line over a 
which omega imaginary omega is 0. So, go underneath because imaginary omega will be 
highly negative. 

So, when omega is a large in negative imaginary part, this quantity will vanish. So, only 
contribution will come from the poles. So, landau suggested that rather than carrying out 
integration over here, it is more convenient to carryout integration over here because 
only the contribution of poles will come. but then your function is not defined below the 
singular line similarity line because as I mention to you otherwise the Laplace integral 



overflow. So, in order to avoid the over flow of the Laplace integral, you defined your 
Laplace transform only in upper half upper plane above the similarity. The issue was 
that, how will you generalize your function. 

Now, let me define what is analytic continuation? Suppose, in my complex plane, some 
function is defined some in some domain, this is a function F 1 is defined and another 
function is defined F 2 in some other domain, this is the F 2 function is defined here. but 
if in this overlap region F 1 is equal to F 2, then we say that F 2 is the analytical 
continuation of F 1. This overlap region may be a simple surface or single line a single 
curve it mean, it need not be a big finite area region the area of this may be negligibly 
small, it could be simple joining line. So, continuation of F 1 to F 2, F 2 is called analytic 
continuation of F 1 if, in the overlap region the two functions are equal or at the 
boundary joining the two the two functions are equal then this is called analytic 
continuation. And what is a function, when it is analytic continuation. 

A function is called analytic, when the derivative of the function you can define suppose, 
there is a function g a function of z. You call this analytic, when g has a real part 
function of x and y suppose, I z I write as x plus i y then, this function can be written as u 
of x y and v of x y. u and v are called the real and imaginary parts of g function and x 
and y are called the real part imaginary part of z function, of z variable. And there is a 
condition that, when delta u y some derivative of this with respect to x or y is related to 
some derivative of y or v with respect to other variable means, the differential coefficient 
of g is uniquely defined irrespective of suppose, there is a function is defined at this point 
here and its defined its neighborhood, when you go from 1 point to another point either 
from here to here, or from here to here, or from here to here, or from here to here it gives 
the same limit then the function is called analytic 

So, when the derivative does not depend on, how z goes to 0, you know we define 
normally g at z plus dz minus g at z divided by dz and limit dz going to 0, this is called g 
prime. but  dz can go to 0 in a horizontal line or a vertical line but when you give an 
increment from here to here, or here to here if the rate of increment is same, then only 
the function is called analytic. Means, it is independent of whether, you make dx equal to 
0 or dy equal to 0. so on, which root you move, then the function is called analytic. So, 
thing is that, if my function is analytic in some domain, the analytic continuation can be 
achieved by detouring the path of after all the Fourier transform that we obtained here, 
are in the form of integral over v z. So, Landau suggested that, why do not we treat v z is 
a complex variable. 

Normally, the integral in these n and d the two numerator and denominator of phi k 
omega. They contain integrals over v z, he suggested that treat v z is a complex variable 



and presume that, those functions n and d functions, that you have written, if they are 
analytic and certain region and if you can avoid the singularity, then in all the domains 
where singularity is do not exists, the function will be analytically continuous. So, what 
he suggested was this. That if, I have to carry out suppose, I look at this n expression. N 
is equal to e upon k square epsilon 0 i k minus infinity to infinity F 1 k 0 v z dv z. This is 
the initial perturbation upon v z minus omega by k. This is some function of omega by k. 
So, what Landau suggested that, in order to carry out this integration, what you are 
having is this. 
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Suppose, I plot real part of v, this integration is over real v z but he says that in order to 
look for analytical continuation of Laplace transform, I treat v z as a complex variable. 
So, real part of v z if I plot here, imaginary part of v z I plot here, what do I get. If I 
move on this horizontal line, my integration has to be turn on the horizontal line, but this 
omega by k with finite imaginary part omega, I can have a pole here or I can have a pole 
underneath. Suppose, pole is here then he says that, this integration over this line is the 
same as over this line, this is suppose, he call as path 3, this is path 4. 

The integral along this line and integral along this line, they will differ only by the 
contribution of the singularity or rigidly of this pole. And, if you have a pole underneath 
here, Landau suggested, then your path integral should be like, this go over this line go 
underneath and surround this here and so line integral this is was a suggestion, that the 
line integral from here to here is the same as line integral over this path plus contribution 
from the singularity. And you will have the contribution singularity here as well, if the 



contribution this singularity lies underneath the imaginary v z line, then you detour your 
contour like this. 

Then, n defined by this integral, this the formed contour will be analytically continuous 
and your Laplace transform is then valid in the domain where imaginary part of omega is 
negative and far negative. So, just by detouring this, he could show that for imaginary 
part of omega higher values certainly, this is the same, because if the singularity lies here 
then and your function is defined there is no problem. The problem arises, when the pole 
lies here so, he says deform the contour. So, what he wrote was this and the same thing 
was done for D, D was written as 1 minus omega p square denominator was k square n 0 
delta F 0 by delta v z upon v z minus omega by k dv z. This is equal to 0 are the poles, 
when I put this equal to 0, they are the poles. So, they say that, if imaginary omega is 
greater than 0 means, the poles lie here then the zeroes of D will be given by this 
integral. 

Then, we are carrying over the integration over the real line. Whereas, if your poles lie 
imaginary part of omega is less than 0, then you have to detour the contour and this is 1 
minus omega p square k square n 0 minus infinity to infinity delta F 0 by delta v z upon 
v z minus omega by k dv z, a contribution from this singularity has to added. So, he 
added a term here, this turns out to be equal to, when you add a contribution to 
singularity, it is 2 pi i times the residue and it turns out to be equal to 2 pi i times omega 
p square upon k square n into delta F 0 by delta v z at v z is equal to omega by k. This is 
the additional term, that he added. So, Landau says that, whenever imaginary part of 
omega is less than 0, in that case because I wanted to really bring my contour to carryout 
inverse Laplace transform to imaginary omega being very negative in that case, he says 
that this detour this contour by this and contour defined like this will have will be 
analytically continuous. And then, he says that these two can be written together in the 
form of a single, make a single statement by using what we call as the principle value. 
You define principle value of a integral through an isolated value, let me just define this. 
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The principle value of an integral is defined as the well suppose, there is a pole 
somewhere through an isolated singular point called a pole is the average of line 
integrals above and below the pole. So, you are assume two line integrals, there is a pole 
somewhere just above, just below carryout the line integrals here and there and average 
some average of the two will be called the principle value. And if, you write this in the 
terms of principle value, then denominator of this Fourier Laplace transform will be 0 
correspond to 1 minus omega p square upon k square and p means principle value of this 
integral minus infinity plus infinity, that is along the v z axis real v z axis delta F 0 by 
delta v z divided by v z minus omega by k dv z minus i pi omega p square by k square n 
0, n 0 is here as well, multiplied by delta F 0 delta v z at v z is equal to omega by k and 
put this is equal to 0. And this is the dispersant relation, because the values of omega 
which satisfy this equation, in general those values are complex and your phi k at time t 
will go as exponential of minus i omega t where omega are the values which satisfy this 
equation, let me call them as omega prime values. 

So, omega prime are the roots of this equation. So, the entire problem of examining the 
growth or decay of perturbations voice down to obtaining the zeroes of this equation. 
This equation is an integral equation, the first integral or there is only one integral has a 
velocity space integral from minus infinity to plus infinity but this omega you to allow 
complex values to omega and principle value, I will just defined as the average of line 
integrals just above the pole and just below the pole. 

And this is the additional contribution that gives rise to damping of waves. If, this were 
not there as (( )) of did (( )) actually did this theory of plasma waves prior to Landau and 
he did not get in damping because he did not treat this singularity carefully. So, when 



you put this is equal to 0, you do not get any damping of wave. but this is the additional 
term that, you have to keep in view that gives rise to damping of the wave. 

Well, I think this entire mathematics can be put in a much simpler way. The entire 
exercise was, actually I carried out just to show you that, if you consider initial value 
problem, then you have to carry out the analytic continuation of the function and in that 
in search of a analytic continuation Landau detour the contour of v z integral treating v z 
is a complex variable, but once you have recognize that, that whenever you are 
encountered with the v z integral or integration velocity space, you will follow the 
Landau prescription then, the rest of the procedures very trivial very simple. And, I 
would like to rework out the solution of (( )) equation. 
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What we were really having is, let me write down the (( )) equation again. Delta f by 
delta t plus v dot del f minus e rather plus e delta delta z of phi delta f 0 by delta v z 
equal to 0. This was the one-dimensional, this was the (( )) equation I can write down 
this z component here and this z here forget this. So, this was my (( )) equation, which I 
wanted to solve and I can solve this very easily saying that, f is equal to f 0 plus f 1. I 
linearized this and my equation became delta f 1 by delta t plus v z delta f by delta z, this 
is the f 1 is equal to minus e delta delta z of phi delta f 0 by delta v z, this is all. 

So, rather than doing any Laplace or Fourier transform, I consider, suppose my phi is 
equal to a exponential minus i omega t minus k z. I presume a Fourier component 
Fourier Laplace component of phi and I want to find out what is the response of my f 1 
in quasi steady state. Then, I will say that my f 1 should also have a similar dependence 



on t and z. So, I say that f 1 should also have as a exponential minus i omega t minus k z. 
Substitute this back in here replace delta delta t by minus i omega delta delta z by i k and 
this equation becomes simple. 
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F 1 becomes equal to e k phi upon m omega minus k v z into delta F 0 by delta v z 
simple. How about the density perturbation, n 1 is equal to f 1 dv x dv y dv z triple 
integral. Substitute this in here, this becomes e k phi upon m outside, I can take minus k 
common also, take minus here and k outside here, in the interior you get, delta F 0 upon 
delta v z upon v z minus omega upon k and this is dv z d x dv x dv y triple integral. The 
denominator does not depend on v v x v y that derivatives also not respect to v z, it is 
simply with respect to v z. So, what I can do to be.  
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For a special case, when I take f 0 to be maxwellian, which is equal to n 0 pi to the power 
minus 3 half v thermal to the power minus 3 exponential minus v x square, plus v y 
square, plus v z square divided by 2 t e. This is the distribution function f 0 for a 
maxwellian distribution function. My suggestion is that, when you do this, then this 
when you carryout delta delta v z this factor exponential factor is can be taken out of the 
differential operator and you can carry out the integration over v x and v y. When you do 
this, then limits on all components of v x v y v z are from minus infinity to plus infinity. 
So, on carrying out v x v y integrations you will just turns out to be. 
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And recognizing that, minus infinity to infinity exponential minus x square dx is equal to 
root pi. If you recognize this, then this integral turns out to be n 1 is equal to minus e k 
phi upon m k, you will get n 0 there upon under root pi you, get rest of things cancel out 
and 1 v thermal you get and you get here delta F 0 by delta v z upon v z minus omega by 
k and dv z minus infinity to infinity. 
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And, if you substitute for, well what is F 0. F 0 is called one-dimensional distribution 
function. Actually, I made a mistake, this n 0 is not there, that is involved in F 0 this is 
equal to n 0. Actually, all these factors are not there they have in a part of F 0. So, let me 
remove them here, they are not there n 0 upon under root pi into v thermal exponential 
minus v v z square upon v thermally square, this is called one dimensional distribution 
function. Now, when I substitute this back in here, this integral takes a simple form and 
let me write down this n 1 is equal to e phi upon m k will cancel out, you will get n 0 
outside n 0 negative sign is already there, pi to the power half, then you have v thermal 
here and if I differentiate this function, you will get twice v z upon v thermally square 
into exponential. 

So, here you get, with a negative sign. So, minus is here, 2 will be there and v thermal q 
will be there and you get here v z exponential minus v z square upon v thermally square 
divided by v z minus omega by k dv z. Its goes from minus infinity to infinity. People 
normally define v z by v thermal as a new variable. Let me call this as p so, v z upon v 
thermal let me call a new variable call p and let me define omega by k v thermal as a 
quantity called xi. Then, this integral takes the following form, n 1 turns out to be exactly 
equal to, this is equal to 2 n 0 e phi upon m pi under root into v thermal square and you 



get this integral of the form p exponential minus p square upon p minus xi d p minus 
infinity to infinity. 
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I define a function called z function of xi, identically equal to 1 upon under root pi 
exponential minus p square upon p minus xi d p. This is called plasma dispersant 
function. Limits are from minus infinity to infinity and in carrying out this integration 
one should be careful does this is not only principle value, this has to add a term 
corresponding to the landau prescription. 

So, the entire understanding of or analysis will Landau is contained in the in the 
interpretation of this integral, not only principle value but the additional imaginary term 
that I had added because of the going round the singularity. So, now this p can be 
replaced by p minus xi plus xi and when p minus xi term cancels with this. This gives 
you root pi so, it becomes a simple expression and this xi can be taken out and you get 
this entire expression in a simple way, neat way. 

 (Refer Slide Time: 55:02) 



 

And let me write down this, it becomes n 1 is equal to twice n 0 e upon m v thermally 
square into phi here, 1 plus xi z function of xi. This is a very important deduction. The 
perturbed electron density due to the plasma wave is related to this expression. This is 
the expression for it and I would like to substitute this in the Poisson equation. The 
Poisson equation is del square phi is equal to minus up rather plus n 1 upon epsilon 0. 
Replace this by minus k square so, you will get phi is equal to minus n 1 upon k square 
epsilon 0 and when I substitute this here, you will get this is equal to 2 omega p square 
upon k square v thermally square with a negative sign into 1 plus xi z of xi. And this 
entire quantity can be written as minus chi e into phi. 

So, chi that is called the electron susceptibility is twice omega p square upon k square v 
thermally square into 1 plus xi and plasma dispersant function of xi. And this equation 
gives you, the dispersant relation for plasma waves 1 plus chi equal to 0. So, this is a 
very important thing that, 1 plus chi e is equal to 0 is the dispersant relation for plasma 
waves. We do not have time today to discuss these implications. I think we need to need 
one more lecture to discuss in these implications. 

I think, we shall continue next time in discussing the dispersant relation and obtaining 
the damping etcetera damping rate of the wave. Probably, I like to close at this point but 
let me remind you that, the entire contribution of Landau really lies reinterpreting the 
integral over a v dv z in the dispersant relation. And when you properly carryout the 
integration following Landaus contour Landaus prescription, you always get an 
additional term that contains the derivative of the distribution functions delta F 0 by delta 
v z. 



As, I mention to you, physically we were expecting that we will get growth or damping 
of the wave, when the distribution function has a positive or negative slope at the phase 
velocity of the wave when v z is equal to omega by k and the same thing is contained 
explicitly in Landaus prescription. I think, we shall discuss this in our next lecture. 
Thank you. 

 


