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Well in this lecture, we shall discuss electrostatic waves in magnetized plasma including 

thermal effects and we will consider these waves to be of low frequency like the ion 

acoustic wave, ion cyclotron wave and magneto sonic wave. 

Well, magneto sonic wave is primarily an electromagnetic wave, but it gives rise to 

charge compression rarefaction and hence, it has a very strong electrostatic character or 

as well. 

We will discuss the validity of fluid approximation when we include thermal effects, we 

will drive a dispersant relation for low frequency electrostatic wave, then discuss ion 



acoustic mode, ion cyclotron mode and then, we will start afresh and discuss magneto 

sonic wave. 
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Well, these are the references, three books by Stix, Krall, Trivelpiece and Chen. 
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In my last lecture, I was talking to you about electrostatic waves in a cold plasma and in 

a cold plasma I ignored the pressure term in the equation of motion. So, pressure term 

was ignored. Well, this is all right as long as the velocity of phase, velocity of waves is 



much bigger than thermal velocity and I mention to approximations that when omega by 

k z is much bigger than the electron thermal velocity and larmor radius of the electrons 

and ions and ions in particular k perp rho i, this was much less than one, then this is 

could approximation. 

However, a great variety of waves in plasmas they may satisfy this condition, but this 

condition is not satisfied, especially for ion acoustic wave and for ion cyclotron waves 

we have a situation omega is less than k z v thermal of electrons. 

Ion thermal velocity may be ignored because that is too small, but the waves may have 

parallel phase velocity less than thermal velocity of electrons and what is the 

consequence. The consequence is that if there is a magnetic field in the system and the 

wave is going at some angle, this is k vector of the wave, this angle is theta. If this theta, 

well if k z is significant and significantly large, it means that the wave phase varies of the 

speed of phase propagation along z direction is less than v thermal, then what can 

happen, that the electrons can quickly follow the variations in potential of the wave and 

the response becomes Adiabatic. Adiabatic response means what, this is called Maxwell 

Boltzmann distribution, which says that if density perturbation will be of the order of 

equilibrium density into e phi upon t. How do we deduce this. 

Because we know that if by wave as a potential phi charge of the electron is minus e, 

then n anywhere should vary as this is perturbed density, it is actual density should be 

like n 0 exponential minus potential energy P E upon temperature of the electron T e, this 

is called Maxwell Boltzmann law. That if you have a potential potential energy 

distribution in the system, the electrons will have a tendency to to those reasons where 

potential energy is minimum and if I put the value of potential energy as minus e phi, 

this becomes n 0 exponential of e phi upon T e, if this quantity is less than one, this can 

be approximated as n 0 into 1 plus e phi upon T e. Hence, the perturbed this is called the 

equilibrium density, this is the perturbed density, this is so much. 

So, electrons can follow the variations in phase of the wave just like an ion acoustic 

wave, when we talked about this wave in unmagnified plasma. So, this is the important 

condition and consequently the ion response becomes totally different as compare to the 

electron ion response, they are totally different ions and electron response are very 

different because of their thermal velocities. 
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So, let me examine the effect of temperature on waves, in the limit that larmor radius is 

still satisfy this condition that k perp rho i is less than one. In this limit, I would like to 

evaluate this and we will be inter essential waves of frequencies less than or comparable 

to omega p i and I will be considering the case where k z v thermal of electrons is much 

bigger than omega. Let us examine, I will consider the electron response. So, let me 

write down first the potential of an a electrostatic wave which is phi is equal to A 

exponential minus i omega t minus k x x minus k z z. I have chosen k y equal to 0 

without any loss of generality because I can choose my x and z axis according to my 

choice. So, z axis I am choosing along the magnetic field B s is parallel to z axis and this 

is my x axis and k vector of the wave is some angle here. 

The electron response I will straight away take as n 1 is equal to n 0 e phi upon T e, 

where t is the electron temperature. As for as the ion response is concerned, I will revert 

back to the old derivation. In my last lecture, I have obtained that if I consider ions to be 

cold, in that case ion density perturbation due to this wave turns out to be equal to      n 0 

e k x square upon into phi upon m i omega square minus omega c i square and there was 

a omega there and then, there was a term because of this n 0 e k z square upon m i omega 



square and phi. I think this omega is not there. So, this was the ion density perturbation, 

this is the electron density perturbation, use them in the poison equation which is Del 

square phi is equal to into epsilon 0 is equal to e times n 1 minus n 1 i. 
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.It can be caused in a simpler form because when we are looking for low frequency 

waves like ion acoustic wave, then we are looking for omega of the order of k c s, which 

is significantly smaller than omega p i. So, it is better to multiply this equation by k 

square c s square by omega p i square. So, multiply the dispersant relation by k square c 

s square upon omega p i square, then that equation takes the following form. Just 

substitute it there and you get A, dispersant relation which is 1 plus omega p i square 

upon k square c s square, I will define c s in a little while, this the electron contribution 

or electron susceptibility, minus you will get omega p i square upon omega square minus 

omega c i square k x square by k square minus omega p i square upon omega square k x 

square by k square equal to 0, where c s I have defined as under root of T e upon ion 

mass electron temperature upon ion mass, omega p i is the ion plasma frequency which 

is n 0 e square upon m i epsilon 0 to the power half, omega c i is the ion cyclotron 

frequency, which is e B s upon m i. This dispersant relation obviously, will have two 

roots let say by quadratic omega square. It will have two roots 
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One plus k square c s square by omega p i square, this is the small, minus k z square c s 

square upon omega square minus k x square c s square upon omega square minus omega 

c i square is equal to 0 and I may call this quantity as alpha prime, which is close to 

unity. 

In that case, this equation takes this following form, I can cast this into the form of a 

quadratic equation which gives you alpha prime omega four minus omega square omega 

c i square alpha prime plus k square c s square plus omega c i square k z square c s 

square is equal to 0 and this gives me two roots, which is omega square is equal to 1 

upon twice alpha prime multiplied by omega c i square alpha prime plus k square c s 

square plus minus under root square of this omega c i square alpha prime plus k square  c 

s square whole square minus four alpha prime from here and this factor, which is omega 

c i square into k z square c s square this whole thing, this factor is multiplying here inside 

the square root. 

There are two signs 1 is called the upper sign is called ion acoustic wave, the lower wave 

I will call simply a low frequency mode whose frequency can be comparable to omega c 

i as well. If I choose, I think this can one can plot this, but in a special case, when either 

of this conditions are satisfied that for either k z is much less than k means for 

propagation perpendicular nearly perpendicular to magnetic field then, this term can be 

taken to be small. 



Or if k z c s is significantly less than omega c i because this is omega c i term or k c s is 

bigger than omega c i. In either of these cases, this equation simplifies and this is a very. 

So, if your frequency your are expecting around k c s, if it is much bigger than omega c i, 

then this expression simplifies to, if k c s is bigger than k c, then this simplifies for the 

plus sign to. Let me just say, when either of this conditions are satisfied this or this or 

this, in that case this dispersant relation gives you two roots one is called omega square is 

equal to k square c s square plus omega c i square. So, when omega is bigger than omega 

c i, this is like ion acoustic wave. 
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And second case, when omega square of this second root is omega square is equal to k z 

square c s square into omega c i square divided by omega c i square plus k square c s 

square. So, what I have done. In order to obtain the second root with negative sign, the 

second term the under root was taken to be small as compare to the first term and I had 

expanded the under root using binomial expansion and this can be rewritten as k z square 

c s square divided by 1 plus k square c s square upon omega c i square. 

Now, there are two distinct roots. So, if I plot them omega versus omega here and I let 

me plot k z c s here. What you get here that suppose there is a frequency, I will call this 

is omega c i somewhere here and omega p i somewhere here. 



Well, this dispersants I have written the limit when I have taken k c s less than omega p i. 

If I do not take this, then I have already given the general relation omega square is equal 

to something, you plotted from there and what you get is that the upper root has a 

frequency higher than this quantity depending on how much k perp you choose, it starts 

somewhere here and goes to omega p i. Whereas, if I plot the second root it starts from k 

z equal to 0, so, omega is becomes nearly small and it has a tendency to go towards 

omega c i. 

So, well the approximation that I made is not nearly valid when this becomes larger, but 

basically there is a, this is a lower frequency root, this is a higher frequency root. I will 

call this the ion acoustic wave and this is a mode if the frequency is in the vicinity of 

omega c i, it becomes a ion cyclotron mode. It will smaller than the this mode is called 

low frequency mode. So, you get different modes; however, we have excluded a very 

broad category of modes because of this restriction that k perp rho i, it has to be must 

less than one. If you include the thermal effects in on ions and finite larmor radius effects 

you get a much richer variety of modes. So, especially I would suggest that when we are 

talking about the lower frequency modes like these modes, finite larmor radius 

corrections are very important and the character dramatically changes for these modes. 

How as for as the ion acoustic mode is concerned, omega is primarily like k c s, this term 

is usually small and this is a sound wave which certainly exists and well; obviously, I 

have done this in this limit, but higher frequencies sound wave can take like this   omega 

p i. 

Well, these modes have been observed in many devises they have driven unstable by a 

variety of mechanisms, parametric instabilities can drive them, beams can drive them, 

ion beams can drive them, unstable electron current can drive them unstable and 

whenever they are produced in a plasma, they give rise to anomalous resistivity because 

some phonons are produced in the plasma, which can give rise to a stronger collisional 

momentum loss of charge particles and can cause enhancement in resistivity of the 

plasma. Now, before I close I would like to go over to a different kind of mode, which is 

electromagnetic in character, but behaves like an electrostatic wave because it gives rise 

to a very strong charge compression. It is some sort of a compression Alfven wave. 
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So, I am going to talk about a particular mode, which is called magnetosonic wave. Its 

dispersant resonance similar to sound wave dispersant relation, but it has a different 

character. 

Consider a plasma with magnetic field along z axis and I am considering propagation of 

a wave purely in the perpendicular direction to it. Suppose, this is my k vectors of wave 

and I choose and there has to be self consistently chosen and we will find self 

consistently later on, that if I choose a wave of electric field, say e parallel to y 

perpendicular to the plane of this board and this is my x axis. So, if I choose an 

electromagnetic wave travelling normal to the halo frequency e m wave, whose 

frequency I will choose to be less than omega c i, may be 1 less than omega c i, ion 

cyclotron frequency. 

And let this wave be polarized perpendicular to the plane of the paper. What will it do. 

This electrons and ions will experience a e cross B motion and e cross B motion will be 

in this direction. So, if the electrons and ions move in this direction; obviously, if the 

velocity of this wave is less than c much much less than c, sound the velocity of light in 

free space, then that will can give rise to very significant amount of charge compression 

and rarefaction. So, because of the e cross B motion the when the electrons acquire, a 

longitudinal velocity longitudinal to k, then there is a charge compression rarefaction and 

if thermal motions are important, then the electron charge compression may not cancel 



with the ion charge compression, then balance would be significant. But this wave will 

also because this as a perpendicular electric field, it will give raise to perpendicular 

current as well polarization current and that can sustain this this mode. So, this is a mode 

that gives rise to density compression as well as oscillatory velocity of polarization 

current in the direction transfers to the propagation. 

Let us examine the character of this mode. I choose e is equal to y cap A exponential 

minus i omega t minus k x, then for the electrons I solve the equation of motion and the 

equation of motion, if I forget collisions, but include the pressure term, the equation is  m 

delta v by delta t minus v dot del v is equal to minus e E minus v thermally square, sorry 

not this, t of the electron upon density equilibrium density into gradient of n. This is the 

equation of motion, but there is a magnetic field term also, which is minus e v cross B s. 

There is a wave magnetic field also, but the product of perturbed velocity and perturbed 

magnetic field, I will ignore. Otherwise, I should include that term also. So, if I presume 

that my plasma does not have a equilibrium drift velocity, that term is not there and as I 

mention that, in equilibrium there is no drift velocity. So, I can write down this this v is 

equal to v 0 plus v one, the perturbed velocity. I substitute it back, ignore the products of 

perturbed quantities and this equation then takes the simple form. I am going to be delete 

quick on this, I will substitute this in this, this term will survive, delta delta t I will 

replace by minus i omega. As I been doing often. This del I will replace by i k, when this 

operates over n and I will write down as n 0 plus n one, perturbed density, perturbed 

velocity and then, this equation takes the following form. 
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Minus i omega v 1 plus omega c v 1 cross z cap is equal to minus e E upon m minus v 

thermally square into i k n 1 upon n 0 and the equation of continuity, which is delta n by 

delta t plus divergence of n v equal to 0. On linearization takes the form, delta n 1 by 

delta t plus divergence of n 0 v 1 equal to 0 and on replacing this by i k, this by minus i 

omega, this gives me n 1 is equal to n 0 k dot v 1 upon omega and since, k is in the x 

direction this simply means n 0 k v 1 x upon omega. Now, it is easy for me to substitute 

this n 1 in terms of v 1 x. So, that this equation d couples from n equation. 
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So, let me just substitute it in there and my equation takes the following form. Minus i 

omega v 1 plus omega c v 1 cross z cap is equal to minus e E upon m and minus v 

thermally square i k is there n 1 upon n 0 from here would be k v 1 x upon omega. I write 

down the x components of this equation. 

Please remember, e E does not have a x component, I am taking only v y, but this k has x 

component, so, this will contribute and this gives me minus i omega into v 1 x, bring this 

also on the left hand side, this will becomes 1 minus k square v thermally square upon 

omega square multiplied by v 1 x, this gives me plus v 1 y omega c is equal to this term, 

which has no x components. So, this is 0 and y component gives me, this term will give 

me, please remember this has no y component, k is in the x direction. So, this does not 

exist, but this will be finite. 

So, for the y component this equation gives me minus i omega v 1 y minus omega c v 1 x 

is equal to minus e E x upon m. This equation is interesting and what you get is usually 

for magneto sonic wave k v thermal is much bigger than omega. So, I will ignore this 

one as compare to this term. You can solve these equations. My goal is to find out the 

current in the y direction the direction electric field because I want to sustain that. So, I 

want to solve these equations to, I will eliminate v 1 x and obtain v 1 y. The result is if I 

obtain v y is equal to is simply this expression, v 1 y turns out to be equal to minus i e E 

y upon m omega into k square v thermally square upon omega c square. This is the value 

of electron oscillatory velocity in the y direction. 
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For the ions, I will get the similar procedure, for ions will give me v 1 i, have a y 

component is equal to minus e E y upon m I omega c i square into i omega here into 1 

minus k square v thermal i square upon omega square. 

For electrons, I could assume k v thermal much bigger than omega, for ions this is a 

small. So, I have retain this ratio, this term. Now, I may write down the current density 

perturbed current density J 1 or simply J, let me call J y. This is equal to minus      n 0 e v 

1 y, due to the electrons and due to ions will be n 0 e v 1 i y, this is the ion contribution. 

When I substitute these values of v 1 y and v 1 i y in these expressions, I get perturbed 

current density turns out to be I times n 0 e square upon m omega k square v thermally 

square upon omega c square E y, this the electron contribution, the ion term turns out to 

be minus i n 0 e square upon m i omega c i square and omega up here into 1 minus k 

square v thermal of ion square upon omega square multiplied by E y equal to 0. 

The interesting part is that this m into omega c square and v thermally square, these three 

combination, this factor and this factor here, v thermal i square upon m i omega c i 

square. They are roughly same because I can write down v thermally square upon m 

omega c square is equal to, this is T e upon m, this is how I define thermal velocity 

square and 1 m is there. So, it becomes m square, this omega c square is e square B s 

square upon m square. 



So, what I am saying is that m square cancels out. What I can do. I can multiply this 

equation by m i square upon m is m i square and this can be written as v thermal of ion 

square into T e upon T i upon m i omega c i square exactly. So, this is a important 

comparison of this term with a similar term here and except for this temperature ratio of 

electron temperature to ion temperature. These two terms are of same value and of same 

sign minus minus becomes plus the same sign.  
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When you do carryout this in here and try to express n 0 e square upon m i as multiply 

epsilon 0 is equal to omega p i square, then the current density turns out to be simply J y 

is turns out to be equal to minus i epsilon 0 into omega p i square upon omega c i square 

omega multiplied by 1 minus k square c s square upon omega square E y. So, this is a 

very simple expression for current density, thermal effects have been carefully included 

in here. In the limit that I have taken omega much less than k v thermal and omega also 

to be less than omega c i, this is what we have assumed. In that limit the perturbed 

current density so much and let us simplify, rather substitute this in the Maxwell’s 

equations. What do we get. Let me begin with the, let me first deduce the Maxwell the 

wave equation. You begin with the third Maxwell equation, which is curl of e is equal to 

delta B by delta t with the negative sign and replace delta delta t by minus i omega. So, 



this becomes is equal to i omega mu 0 H and now, you take the fourth Maxwell equation, 

which is curl of h. 

Curl of h is equal to J plus delta D by delta t, but D is epsilon 0 e in plasmas and delta 

delta t is minus i omega. So, it gives me J minus i omega epsilon 0 into E. Take curl of 

this equation and use this equation, you will get curl of curl of E is equal to i omega mu 0 

curl of H which is this expression. So, J minus i omega epsilon 0 e. When I put the and 

this curl curl of E, I can simplify as minus Del square of E plus gradient divergence of E. 
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So, this equation can be rewritten as minus del square of E plus gradient divergence of E, 

this is equal to, if you just put the value of J, then this becomes equal to omega square by 

c square E due to the last term and this becomes minus, well let me write this as i omega 

by c square epsilon 0 J. Let me first write this in this form then, value of J I will 

substitute little later, del square I can write down as minus k square. So, Del I replace by 

i k x cap in this equation and this gives me, for the y component. First, let me write this. 

This gives me k square E vector minus k and k dot E is equal to omega square by c 

square E minus i omega by c square epsilon 0 J. Write down the y component of this 

equation, this will give me, please remember k does not have a y component. So, this 

term is not having any y component, this will give me k square E y is equal to omega 

square by c square E y minus this term i omega by c square epsilon 0 J y. Now, use the 

value of J y and you will get omega square by c square E y the first term and this gives 



me minus epsilon 0 cancels out, omega p i square upon c square omega c i square, then 

you will get omega square into 1 minus k square c square by omega square into E y. E y 

will cancel out from both sides, we get the dispersant relation. 

Please note, when I take this omega square in inside this, will cancel with this omega 

square. So, what you can do. These two are the omega square dependent terms. The left 

hand side in the last term are independent omega term, they can combined can be 

combined together. So, what do you get?  
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When you combine these, you get k square minus omega square by c square is equal to 

omega square upon v Alfven square, I will just define this v Alfven, into 1 minus k 

square c s square by omega square. v Alfven is simply is equal to c omega c i upon 

omega p i. 

So, bring the omega independent from left hand side, you will get k square into 1 plus 

sound velocity square upon v Alfven velocity square is equal to omega square by c 

square into 1 plus c square upon v Alfven square and this gives the dispersant relation. 

Omega square is equal to k square c square multiplied by v Alfven square plus c s square 

upon Alfven velocity square plus c square. Usually in plasmas, v Alfven is much much 

less than c, the velocity of light in free space. You can ignore this v a square, then this c 



square will cancel with this c square and this is approximately equal to k square into c s 

square plus v Alfven square, this is a interesting wave. 

It propagates across the magnetic field, it carries energy and momentum across the 

magnetic field and the phase velocity of this wave is omega by k of the order of Alfven 

velocity. Usually, Alfven velocity is bigger than c s. So, this travels across the magnetic 

field. I would consider these to be a some some some modification of Alfven wave due 

to thermal effects. c c s contains the effect of, actually I forget to define c s. c s is defined 

as T e plus T I upon m i. This is the thermal velocity, if under root of this quantity is the 

actually sound is speed in a plasma. 

So, this is a some sort of a modification of Alfven velocity, Alfven wave compression, 

Alfven wave by the presence of thermal effects. Finite temperature of electrons and ions 

and phase velocity. Well, if you want to calculate the pointing vector or average energy 

flow, always you can calculate by using E cross H. Since for this mode, electric field is 

perpendicular to k. H is always finite and this is always finite half, this is star if I want to 

calculate this, put a star here. So, the average power flow; obviously, this will be parallel 

to k perpendicular to magnetic field and these waves can carry momentum and energy 

across the magnetic field and hence, they are very important waves. 
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I forgot to mention something about the low frequency electrostatic waves in two species 

plasma. In my last lecture, I was talking to you about cold plasma limit for the 

electrostatic waves and in the cold plasma limit, the dispersant relation for the low 

frequency mode turns out to be, let me just give the, that is a important thing.  

I considered the case, when omega is less than or comparable to omega c i and I found a 

mode actually the dispersant relation was simply equal to 1 plus omega p i omega p 

square upon omega c square minus omega p square by omega square k z square upon k 

square minus omega p i square upon omega square minus omega c i square k x square 

upon k square minus omega p i square k z square upon omega square k square, this is 

equal to 0. This is the dispersant relation that we derived in the cold plasma limit for 

waves of frequency much less than electron cyclotron frequency. This is the only term; 

otherwise, this would be omega square minus omega or rather omega c square minus 

omega square, this was the relation we had obtained last time. 

Here, if you had a plasma like deuterium tritium, in which there are two ion species, then 

you will get two terms due to ions. The thing is, if you are talking about low frequencies, 

at low frequencies if k z is very small, you can ignore the electron term here and usually 

in plasmas omega p is less than omega c. So, this is like this this is of the order unity. So, 

these terms are small and these terms must balance each other. 

In the vicinity of omega equal to omega c i, these terms must balance each other and if k 

z is tiny, this term is negligible. One term cannot balance itself, but if there are two 

species, two ion species then, one ion term could be positive, another ion term could be 

negative and there is possibility of a new mode of wave propagation and. So, in a two 

species plasma two ion species plasma a new mode exists and let me generalize this 

dispersant relation to a two species plasma. What I should do. For each species, let me 

define a plasma frequency. Suppose, the density of one ion species is n 0 1 and charge of 

this species is z 1 e, this is charge. So, this is density into charge square upon m 1 is the 

mass of one ion species into epsilon 0. 

And for second ion species, I can define. Similarly, ion plasma frequency of second 

species is equal to density of second species ion species, charge of the second ion species 

upon mass of the second ion species in the epsilon 0. Let me just define what are these 



quantities. n 0 one, the density of ions of ion species one and z 1 e is the charge of ion 

species one. Similar quantities are n 0 2 and z 2 for the second species. 

And how about this cyclotron frequency, I have to multiply define cyclotron frequency 

of a species one as, z 1 e B s upon m 1 and similarly, omega c 2 for second species, I will 

define. Once you define, each of these two terms will split into two terms corresponding 

two ion species and I am looking for a possibility. 
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Let me just write these. This modify dispersant relation would be 1 plus omega p square 

by omega c square minus omega p square upon omega square k z square by k square 

minus omega p 1 square upon omega square minus omega c 1 square k x square by k 

square minus omega p 2 square upon omega square minus omega c 2 square k x square 

by k square minus omega p 1 square plus omega p 2 square upon omega square k z 

square by k square is equal to 0. 

Suppose, my first species is deuterium and second species is, say one species is 

deuterium and second species of ions is tritium then; obviously, omega c 1 is bigger than 

omega c 2 because mass of deuterium is less than mass of the tritium. What will happen. 

Out of these two terms if I choose my omega in between these two frequencies omega c 

2 and omega c one, in that case if omega is less than omega c 1 this term will be positive 

and if omega is bigger than omega c 2 this term is negative and these two terms can 



balance each other. So, when k z is nearly 0 I can ignore this term this term and this is 

too small because they are of the order of unity. While these terms could be much bigger. 

So, what I am saying is, that there is a possibility of an electrostatic wave, where these 

two terms can balance each other and when they will balance each other, this factor is 

common. The frequency you can obtain by saying that omega p 1 square upon omega 

square minus omega c 1 square is equal to omega p 2 square upon omega square minus 

omega c 2 square with a negative sign and that gives the frequency of the mode and that 

is a very interesting thing. This is a very interesting mode and it turns out to have a 

frequency, something like this, if I simplify this you can obtain the frequency, which is 

in between this range and this frequency is called upper, this is called ion ion hybrid 

frequency ion ion hybrid frequency. Obviously, this mode does not have a frequency 

exactly equal to ion hybrid frequency alone, it can have a frequency because this is 

dispersant relation, you can obtain omega as a function of k x or k z. 

So, for a k z equal to 0, this is the hybrid frequency. Frequency when k z is equal to 0 

exactly, but when k z is finite the frequency could differ from ion ion hybrid frequency 

and I think this is a very important mode which is used for heating ions in tokomak using 

ion cyclotron waves. So, you choose a frequency of the your signal or R f wave equal to 

the ion hybrid frequency, let me simplify this expression and give the final expression. 

(Refer Slide Time: 55:29) 

 



It turns out to be omega square is equal to omega c 1 square into 1 plus m 1 upon m 2 m 

0 1 upon m 0 2 z 1 upon z 2 divided by 1 plus m 2 upon m 1 n 0 1 upon n 0 2 z 1 upon z 

two, the difference in these two is m 1 upon m 2 here and m 2 upon m 2 here. This is the 

ion ion hybrid frequency and this mode is very interesting mode it has been found to be 

very useful for heating tokomak. 

I think we have talked substantially in detail. The electrostatic waves in the fluid 

approximation. I think probably now we have to move to kinetic description or kinetic 

theory to discuss the effects of finite larmor radius and resonant wave particle 

interactions like the phenomenon like landau damping. Probably, we shall discuss that in 

our future lectures thank you very much . 


