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Today, we shall talk about electrostatic waves in magnetized plasma. We will discuss the 

cold plasma approximation. As today, I will be primarily concerning wave propagation 

in plasmas, where thermal effects are an important. We will shall discuss rather drive a 

dispersion relation for electrostatic waves then discuss a private wave, lower hybrid 

wave, the excitation of a lower hybrid wave by an electron beam, and then we shall talk 

about low frequency waves in a magnetized plasma. 

The references for today’s talk are three books one by T H Stix, the other one by Krall 

and Trivelpiece, and the third one by F F Chen. 
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We have already learned about electromagnetic waves, and we found that, if there is a 

plasma in which there is a magnetic field, say that is in the z direction. And if there are 

waves travelling at some angle to magnetic field, then there are some resonance is in 

cutoffs. Resonance is a region, where k of the wave goes to infinity; that is a reason 

where the electromagnetic wave can get mode convert into electrostatic waves, because 

electrostatic waves are those waves, for which the electric field of the wave is nearly 

parallel to the k vector of the wave. 

And such waves can be expressed rather in such electric fields can be expressed as 

gradient of a scalar or potential. So, phi is called the electrostatic potential and E is called 

the electric field of than an electrostatic wave. Since, E is primarily parallel to k, the 

magnetic field of this wave which is equal to from third Maxwell equation k cross E 

upon omega is 0. So, these waves have no magnetic field component, they are primarily 

electrostatic waves. 

And they are very similar to waves in unmagnetized plasmas, the laminar wave or the 

sound wave. However, the presence of magnetic field introduces a very large variety of 

modes. And these waves are influenced by the gyration of electrons or gyro motion of 

the electrons around the lines of force. We know that if there is a plasma at finite 

temperature then the electrons gyrate about the lines of force like this. Similarly, ions 

also gyrate and ion larmor radius is bigger than the electro larmor radius much bigger 



rather. So, what happens that if you are launching a wave into the plasma and this is the 

static magnetic field and this is the k vector of the electrostatic wave. If k perpendicular 

rho i is comparable or greater than unity, which means that if the transverse wavelength 

of the wave is like… 

If I draw a picture like this, suppose my wave is going in this way. And if the electro ions 

gyrate over a very large larmor radius, so that effective wave length is shorter than the 

larmor radius, in that case non local effects become important. That the electrons, the ion 

which is at some position during one wave period rotates and moves around and 

consequently finite larmor radius effects will be important and one cannot use the fluid 

theory for such waves. It is only when the k perp rho i is less than 1, one can treat all 

lines like a fluid. Otherwise, finite larmor radius correction effects will be very 

important. So, we shall discuss the finite larmor radius effects through a kinetic theory at 

a later stage, but today I will be restricted my discussion to plasmas, where finite larmor 

radius effects are unimportant. 
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And secondly, second important consideration is, if the wave is travelling then you talk 

about a quantity omega. If it is bigger than k z v thermal, much bigger than k z v thermal 

means the phase velocity of the wave in the direction of magnetic field is much bigger 

than thermal velocity of electrons then we can ignore the thermal effects. This is a 

important consideration. Otherwise, if omega is less than or comparable to k z v thermal 



where k z is the z is the direction of magnetic field, so if my wave is going static 

magnetic field and my wave is going at some angle then, I can always resolve a 

component of k in the direction of magnetic field and then compare whether the wave 

frequency is less than k z v thermal or bigger than k z v thermal. If omega is much bigger 

than k z v thermal then thermal effects are unimportant. 

Because electrons cannot really follow electrons move with a random velocity of the 

order of thermal velocity. And during one wave period, they do not travel a significant 

distance as compare to wavelength and hence, effects of thermal motion are unimportant. 

So, today we are talking about two things that omega is much bigger than k z v thermal 

and also k perp rho I, where rho i is the ion larmor radius and k perp refers to the 

component of k vector perpendicular to d c magnetic field much less than 1.So, we will 

consider the plasma to have no thermal effects or no pressure term in the equation of 

motion. Now, I consider a equilibrium for the plasma. The plasma comprises electrons 

and ions ions and electrons. To begin, we will consider only 1 spaces of ions, but later on 

we will generalize our result to two spaces, two ion spaces plasma. 

Ions will be characterized by mass m I, electrons by mass m, charge of the ion will be 

taken as plus e, ion charge electron charge will be minus e and I will be taking the 

densities to be equal the plasmas quasi, was a neutral. So, the density of ions is n zero in 

equilibrium and electron consideration is also n zero in equilibrium. Temperature is zero 

for electrons as well as ions. Now, we perturb this by an electrostatic wave of potential 

phi, which I will take as some amplitude A exponential minus i omega t minus k x x 

minus k z z. I’m defining my x axis in such a way that k vector lies in the x z plane. So, 

this is my x axis and this is my x z plane and k vector lies in there. I would like to find 

out in terms of k x and k z, the value of omega and we will find that there are many roots 

of many values of omega possible for 1 pair of k x k z and that gives rise to a number of 

modes in the system . 
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Now, let me look for the response of electrons to such a potential. The equation of 

motion for electrons can be written as follows, m delta v by delta t plus v dot del v is 

equal to e grade phi minus e v cross B s the static magnetic field. This is the equation of 

motion for the electrons. I will write v is equal to the equilibrium velocity, drift velocity 

which is zero plus some perturbation v 1 and linearize this equation, means I will ignore 

the products of v 1 with v v 1 and then this equation takes the following form. On 

dividing this equation by m this takes the form delta v 1 by delta t is equal to e upon m 

del phi grad phi minus e upon m e B s upon m rather and v cross z cap. 

This quantity e B s by m i will call as omega c, electron cyclotron frequency. Since, phi 

varies in exponential wave manner with respect to t and x y z so this del operator I will 

replace by i k vector and because v v is the response to phi. So, in the quasi steady state 

the response should have same t x and z dependence as the source with a source term, 

then delta delta t I will simply replace by minus i omega and this term by omega c.  
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Then, this equation takes the following form, minus I omega v 1 vector plus omega c v 1 

cross z cap is equal to i e upon m k vector into phi. This becomes a simple equation and 

one can write down its x y and z components, and those will be x component will be 

minus I omega v 1 x plus omega c v 1 y is equal to i e upon m k x into phi. This my x 

component, y component would be minus I omega v 1 y minus omega c v 1 x is equal to 

zero, because k does not have a y component. And z component, which is the component 

along the magnetic field d c magnetic field. This term will not contribute. So, you will 

get minus i omega v 1 z is equal to i e upon m k z phi this equation gives you straight 

away v 1 z is equal to minus e k z phi upon m omega, has no influence of magnetic field 

because the motion is in this z direction. 
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The x and y components of equations simplify to give you v x, which we require equal to 

minus e k x phi omega upon m omega square minus omega c square. One can see some 

sort of a cyclotron resonance in this response v x, and v y you can obtain straight away 

by this. From this value by dividing multiplying by i omega c upon omega into v x, this 

omega c upon omega into v x. Now, if we go over to the equation of continuity, because 

in order to obtain the dispersion relation for electro static waves, one requires to solve 

the Poisson equation, where you require the density perturbation. 

 So, for that you solve the equation of continuity. And the equation continuity is delta n 

by delta t plus divergence of n v is equal to 0. We expand n around the equilibrium value 

n 0 plus n 1. I forgot to write the subscripts one here, they are v 1 x and v 1 y. So, when I 

substitute this in this equation and linearize, means ignore the product of n 1 with v 1. 

This equation takes the form delta n 1 by delta t plus divergence of n 0 v 1 is equal to 0, 

replace delta delta t by minus i omega del by i k. 
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And this equation gives, n 1 is equal to n 0 k dot v 1 upon omega. On using the values of 

v 1 x and v 1 z, this equation gives you n 0 term as a minus n 0 e upon m outside, inside 

you will get k x square upon omega square minus omega c square, and the term due to 

electron motion along the field lines is k z square by omega square into phi. So, this is 

the electron response. Similarly, the ion response one can obtain n 1 i, the density 

perturbation of ions due to the wave by replacing the electron parameters by ion 

parameters. 

For instance electron charges minus e replaced by plus e, electron mass is m replaced by 

m I, omega c should be replaced by minus omega c i, the ion cyclotron frequency. This 

becomes n zero e upon m k x square upon omega square minus omega c i square plus k z 

square upon omega square phi, where omega c i is equal to e B s upon m i is called the 

ion cyclotron frequency. These two density perturbations, this is sorry m i here. These 

two density perturbations will be comparable, when omega is substantially small as 

compare to omega c. 

So, that this term this because the otherwise, if omega is comparable to omega c or 

higher, then ion contribution is negligible only at lower frequencies when this term is 

suppressed because of omega c factor here, and this term is also less important than ion 

contribution could be significant. So, it is only for low frequency waves that the ion 

contribution is important. 
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Anyway, let me substitute these in the Poisson equation which is del square phi into 

epsilon zero is equal to n 1 e minus n 1 i into e, this is ion density perturbation, this is 

electron density perturbation. This equation we have written a number of times is 

deduced from the first Maxwell equation. Divergence of d is equal to rho, d I write as 

epsilon zero into e, e is minus grade phi and rho is the difference of densities of electrons 

and ions multiplied by the charges.  

Now, replace this by k minus k square, put the values of n 1 and n 1 i divided by epsilon 

zero, this equation takes the following form. One, let me write down this (( )) form of 

this one minus omega p square over omega square minus omega c square k x square 

upon k square minus omega p square over omega square k z square by k square minus, 

this is the electron terms one arises because of this term and ion contribution turns out to 

be omega p i square upon omega square minus omega c i square k x square by k square 

minus omega p i square over omega square k z square by k square equal to zero. 

Well, you may check this term as k z square by k square and one upon omega square and 

this is also as the electron term as same term, but there is a large term omega p square 

multiplying here and this small term omega p i square multiplying here. So, this term you 

can ignore as compare to this term, tiny small. These are the three terms that must equate 

to balance with one and that will be the dispersion relation. In order to obtain the 



dispersion relation, well we go to two different regions. One when omega is much bigger 

than omega c i and one. 

The other one, when omega is comparable to omega c i or less. So, I will consider two 

cases, one is called the high frequency or medium frequency inter medium frequency 

waves, when omega is much bigger than omega c i. So, I will consider that case, so for 

omega substantially bigger than omega c i, I can ignore the ion omega c i here and then, I 

say that the ion response has become un magnetized ions are un magnetized ions are un 

magnetized. There is no influence of magnetic field on their response. In that case, well 

even if you are not ignore this term, because this becomes omega p i square by omega 

square, same factor. They can combine together to simply give you k x square by k 

square can, you know just becomes unity. 

So in that case, this equation becomes one minus omega p square upon omega square 

minus omega c square k x square by k square minus omega p square upon omega square 

k z square upon k square minus omega p i square by omega square, where I have ignored 

omega c i square and added these two terms, simply this becomes zero. This equation is 

by quadratic in omega because these two terms can be combined as one upon omega 

square and this equation can be rewritten in the following form. 
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This can be written as omega square into omega square minus omega c square minus 

omega square omega p square k x square upon k square, then minus omega square minus 

omega c square into omega p square, then within the bracket there is a term multiplying 

here as the term k z square upon k square plus m i upon m is equal to zero. We open 

these brackets, this becomes a quadratic equation omega square. So, omega four here 

minus omega square and omega c square plus omega p square plus omega p i square 

minus sorry plus omega c square omega p square into k z square upon k square plus m 

upon m i m i. 

Actually, I made a mistake here. This is not m i upon m, this is m upon m i here. So, this 

equation this equal to zero is the quadratic equation omega square. It has two roots and I 

can ignore this omega p i square as compare to omega p square. So, I ignore this, take 

this to be nearly zero and this equation takes the following form, omega square is equal 

to half omega c square plus omega p square plus minus under the root omega c square 

plus omega p square whole square minus four omega c square omega p square into k z 

square upon k square plus m upon m i. There are two roots. 

The root with the upper sign is called upper hybrid wave and the root with lower sign is 

called lower hybrid wave. Upper hybrid wave certainly has a higher frequency, which is 

certainly bigger than this quantity. So, when omega is this is large quantity, then what 

you see here that, this m upon m i term is too small as compare to the bigger terms and 

you can ignore it. On the other hand, when you consider negative sign because the large 

part of this term will cancel the large part of this term. So, this ion this is primarily this is 

ion contribution all others are electron contributions. So, ion contribution can become 

significant. So, for the upper hybrid wave when I consider positive sign, I not this term is 

too small as compare to remaining term. So, I can ignore this term and my root becomes. 
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I let me write down this as upper hybrid wave. A root turns out to be omega square is 

equal to half omega c square plus omega p square plus under root of omega c square plus 

omega p square whole square minus four omega c square omega p square k z square by k 

square. This is the quantity that depends on the angle, this is Cos theta. If theta is the 

angle k makes with the z axis, this this is simply the angle. 

You may note, if this angle is zero, then k z by k is unity and this is the has the minimum 

frequency minimum value. So, omega is minimum when k is parallel to static magnetic 

field, this is my k, this is my static magnetic field. In that case, k z by k is unity and this 

becomes a perfect square omega c square minus omega p square whole square minus 

sign and this gives me omega square is equal to omega c square or omega p square 

whichever is minimum. So, minimum of the two  sorry maximum of the two maximum 

of the two whichever is larger the value have to consider. 

And when omega is when you increase this angle, if k is at an higher and higher angle 

then, when angle becomes 90 degrees this quantity will have the largest value. So, omega 

is maximum when k is perpendicular to B s means k z is zero. If I take this to be zero, 

then these two factors are equal and you get the omega is equal to omega square is equal 

to omega c square plus omega p square and this is defined as upper hybrid frequency. So, 

this wave has a frequency starting from omega c or omega p, whichever is larger to 



omega equal to omega U H. As the angle theta between the k vector and magnetic field 

varies. 

So, if I can plot here a graph, suppose my plasma has omega p somewhere here and 

omega c somewhere here, then upper hybrid frequency which is the under root of this 

quantity will be somewhere here. So, if I plot omega here and if I plot k z upon k here, 

then at k z is equal to zero, the frequency is omega U H and your wave will be localized 

in this here. it is starts from here, this is unity here. This goes from here to here. So, this 

upper hybrid wave has a very limited range of frequency between omega c and omega 

upper hybrid. 

If omega p were bigger than omega c, then the frequency domain for this wave is simply 

bounded between these two values. The wave exists only in a very small frequency 

range. This is the upper root called upper hybrid wave. Now, let me go and this wave has 

been found to be a very useful, whenever you launch an electromagnetic wave, then in 

the vicinity of omega equal to omega U H. The electromagnetic wave gets mode 

converted into a electrostatic upper hybrid wave and that can give rise to a strong 

absorption or a heating of particles by the wave. So, this is a very important branch 

which is relevant to laser produce plasmas, where strong self generated magnetic fields 

exist and the laser can get mode converted into electrostatic upper hybrid wave. 

(Refer Slide Time: 34:26) 

 



Now, let me talk about the lower hybrid wave. This is a wave with a negative sign in the 

disperse in that equation. So, omega square is equal to half omega c square plus omega p 

square minus under root of omega c square plus omega p square minus four omega c 

square omega p square multiplied by a factor here k z square by k square plus m upon  m 

i. This is here. Now, please remember. If k z by k is comparable to unity or half or one 

third or one fourth or one tenth even. I can ignore m upon m i because electron to ion 

mass ratio is a very small quantity of the order ten to minus three, few times ten to minus 

four or something of that order ten to minus four, ten to minus three. 

So, as long as k z by k is 0.1 or bigger means as long as the electrons k z by k, I am 

talking about point 1 means sign, this makes an angle of something like eighty degrees or 

smaller. So, when k makes an angle of eighty degree with the d c magnetic field or a 

smaller angle, I can ignore the ion motion and this equation can be simplified can be 

rather evaluate it. On the other hand, if k z becomes k z by k becomes comparable to m 

by m i or less. 

So, when the wave is travelling nearly at 90 degrees, then this is the term to be retained. 

However, what I can do in that case because when this is a small this is also a small this 

is becomes a small term. So, at large angle propagation, so for k z square by k square 

significantly less than one, this entire term is a small as compare to this one and I can 

remove this take this out and carry out binomial expansion. When you do binomial 

expansion this equation takes omega square becomes equal to half, omega c square plus 

omega p square minus, take this factor common. Sorry, this was a whole square. So, this 

is omega c square plus omega p square. When this gets out becomes only single power. 

And then you are left with one minus four omega c square omega p square k z square 

upon k square plus m upon m i divided by omega c square plus omega p square whole 

square and when you take this square it out you can divide by two and remove their 

square root sign, because this is smaller than one. This can be simplified. This term will 

cancel with this one and this becomes nearly equal to, this two will cancel with this four 

and this two. 

So, essentially this becomes plus, minus minus becomes plus. You get this is equal to 

omega p i square. If I take m upon m i outside, it becomes omega p i square, one power 

will cancel, this becomes equal to one plus omega p square by omega c square and 



because I have taken this m upon m i outside, this becomes one plus m i upon m k z 

square by k square. This is known as the lower hybrid wave, a very important wave, very 

useful for current drive and heating in tokomak. It is a very prominent wave in beam 

plasma systems. It is also very important wave that has been found to be a very effective 

in quenching the instabilities in q machine and so on. 

So, lower hybrid wave this is a electrostatic mode, where ion motion is un magnetized as 

I mentioned before because of frequency is bigger than ion cyclotron frequency, but ion 

plays ions play important role when k z upon k is less than one much less than one. If k z 

by k were not much less than one, suppose they are comparable to unity in one third, one 

tenth, one fourth. In that case, ion motion can be dropped and you can find here that the 

if I take k z tending to one, say k z by k tending to unity then, this gives you the omega 

frequency. The largest value of omega is from this equation if I ignore the ion motion 

and take k z upon k equal to unity. In that case, this turns out to be equal to omega c or 

omega p whichever is smaller. So, this is a wave whose frequency, the minimum value 

will be when k z equal to zero then, this is the minimum frequency. This frequency under 

root is known as the lower hybrid frequency. 
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So, let me define a lower hybrid frequency omega L H as omega p i upon under root one 

plus omega p square upon omega c square and in terms of this omega for this wave turns 

out to be dispersion relation. For the lower hybrid wave at large angle of k with respect 



to magnetic field turns out to be equal to omega L H multiplied by one plus m i upon m k 

z square by k square. And if I plot the dispersion relation, plot omega here and let me 

plot k z by k here. Let me put this one here and zero here. Lower hybrid frequencies 

close to omega p i because in most plasmas omega p is less than omega c. So, this is 

close to ion cyclotron ion plasma frequency. So, the ion plasma frequency somewhere 

here and ion cyclotron frequency is much less than this somewhere here. 

And omega, suppose I choose a plasma with omega p smaller than omega c and upper 

hybrid frequency is somewhere here. So, these are the various frequencies characteristic 

of a magnetized plasma. If I plot omega versus omega versus k z by k for this wave, you 

may note here that it is starts the minimum value starts from omega lower hybrid, which 

is slightly less than omega p i because it is vector. So, somewhere here, it will starts from 

somewhere here. This is the lower hybrid frequency and the maximum value it will go to 

omega p. So, this will be like this. This is the kind of structure, this wave will this is the 

dispersion curve for this wave. This is the frequency maximum frequency it can take. 

It is in the lower frequency side that this ion motion is important and at higher 

frequencies the wave is primarily governed by the motion of electrons and there is no 

wave between omega c and omega p. Upper hybrid wave starts from upper hybrid 

frequency and goes down to the omega c from here, this is the branch. This is the upper 

hybrid branch; this is called the lower hybrid branch of the wave. 

So, linear wave splits into two branches. One is upper hybrid branch, the other one is a 

lower hybrid branch. This goes up to this point here. This wave is very very important 

the interesting part of this wave is that a wave launched into a tokomak from outside can 

get mode converted into this mode and as the wave approaches this lower hybrid 

resonance because as wave goes it from here. Very interesting thing you can notice here. 

From this is itself you can notice. Suppose I have a tokomak plasma. This is the cross 

section of a tokomak. You are launching a wave from here, the wave is opposing towards 

the center. As the wave comes in here, the density is maximum in the center of the 

plasma and zero at the edge. 

So, as density increases omega p i goes up, omega p i increases omega L H also goes up. 

In order to keep omega constant, k z must decrease or k must increase, but k z cannot 

decrease because the plasma has density variation perpendicular to magnetic field and  k 



z is a component of k vector in the direction of magnetic field. So, k is that does not 

change and as a result when omega approaches omega L H this term must vanish, means 

k should go to infinity. That is the advantage. So, when the wave is coming from here, as 

the wave approaches the center this tokomak center then, k goes to infinity or k perp 

goes to infinity, k x goes to infinity and the wave becomes very slow. Now, as I 

mentioned to you that Cerenkov resonance for ions will occur when omega equal to k v 

thermal of ions. Though, in our formalism we have ignored thermal motions. 

But as the wave approaches the lower hybrid region lower hybrid layer in the plasma, 

when omega p i or omega L H becomes close to omega, k becomes very large and k 

becomes very large means the wave becomes very slow. So, many ions they can move 

with the same velocity as the phase velocity of the wave and consequently they can 

resonantly take energy and momentum from the wave and can get be can be can be 

heated. So, that is a very interesting scheme. Now, let me mention the relevance of this 

mode to other devices and one important device is called a beam plasma system 
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Let me just mention a something about the beam plasma system. Consider a beam 

plasma system, it is a very important and simple system to a study basic physics of 

parametric instabilities and other non-linear phenomena. This comprises primarily and 

electron gun here, that launches an electron beam and then, there is a chamber here 

which is placed in a magnetic field. So, these are the simply schematic representation of 



magnetic coils that produces excel magnetic field and what you get here is, well this is 

vacuum system, this is to vacuum pump and this is closed here. 

What you observe here that well, this is the electron gun. Let me simply mention what 

kind of gun we have. You have two rods to which you connect a tungsten wire and then, 

you apply a potential difference of nine volt or so, to pass a current through the filament. 

So, these are two conducting rods, but this is a thin tungsten wire. When it gets heated by 

passing a current, it emits electrons and then, this is placed inside an enclosure with a 

hole here. So, actually there is a hole here there is a hole here. 

And the gap between this and this is only a few millimeter. We apply a potential 

difference between these two. Negative and this is positive of about a few hundred volts 

or may be kilo volt or few kilo volt, then you will get a electron beam. If V zero is the 

potential difference between the cathode and the anode, then the electron beam energy 

will be e V zero. So, electron beam will have a velocity given by this relation half m v 

zero b square. So, as a simple system, it produces an electron beam. Typical values of 

beam current are in milliamperes and when the beam passes through a low pressure gas, 

normally people put argon or nitrogen, you can also put helium, then it will produce a 

plasma on the axis and some something like this you get a plasma here. 

Obviously, the radius of the plasma is less much less than the radius of the vessel and 

much people have observed the generation of waves inside their plasma. Lower hybrid 

waves in this plasma and those waves gives rise to harmonic generation, they also give 

rise to modules real instability and so on. So, let us understand how this electron beam 

drives lower hybrid waves unstable. Right now, we have studied that a plasma in the 

presence of a magnetic field and in this case the magnetic field is in this direction, B s 

which is parallel to z axis, this is my axis of a system is z axis. So, in this plasma you are 

going to have an electron beam and that drives the instability. I can deduce a simple 

expression for a growth rate, if I ignore the non local effects and taking into a 

consideration, those effects is also not difficult. One can see this in papers or may be 

little older papers. On this, let me just simply mention what to happens here. 
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So, I will simply give you a very some scheme of lower hybrid wave excitation by an 

electron beam. We have already studied two steam instability and what the two steam 

instability says that, if you have a wave of frequency omega and if you launch an 

electron beam, then whenever omega is equal to k z v zero beam, if beam is going in the 

z direction, then this is called Cerenkov resonance and one can have growth of the wave 

by the at the expense of beam energy. Now let us see, for the lower hybrid wave we have 

seen that if I plot omega versus k z here, the graph goes something like this and if I draw 

this equation, then the graph will go something like this, depending on the value of v 

zero b. 

So, this is the point of intersection where the natural frequency of an Eigen mode will be 

equal to the Cerenkov resonance frequency and this is my equation omega equal to k z v 

zero b and this is my lower hybrid wave dispersion relation, which I have just written. 

So, this is L H dispersion relation. Now, if you look the look at the dispersion relation for 

the lower hybrid wave, which is one minus omega p square one plus rather omega p 

square by omega c square. If I am talking about omega much less than omega c and 

omega p, in that limit the dispersion relation that I have just written for the lower hybrid 

wave becomes like this, minus omega p square rather omega p i square by omega square 

into m i upon m k z square by k square plus one, this is the electron contribution. The 

first term here also electron contribution, the other one is the ion contribution to the 

dispersion relation. 



But if there is a beam term here, then there is a term like omega p of the beam square 

upon omega square multiplied by sorry this is not omega, omega minus k z v zero b 

whole square and k z square upon k square, this is equal to zero. So, this is the additional 

term that you get and this equation can be recast in a interesting form because if I take 

this factor common and take one upon omega square out, then this equation takes this 

form. Let me just write down, this becomes omega square minus, I will call this is omega 

prime square and this becomes omega minus k z v zero b whole square is equal to some 

factor on the right hand side which is omega p b square k z square upon k square then 

one omega square I have taken common, so this should goes here, omega square goes 

there and this factor comes in here, one plus omega p square by omega c square. 
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This equation and omega prime is how much, this is the omega prime square is exactly 

same as omega L H square into one plus k z square by k square m i upon m. This 

equation, if you examine has the character of the two stream instability, where omega p 

is replaced by omega prime, rest of the equation is same. So, by same technique you can 

solve this equation by taking that omega prime, suppose I choose equal to k z v zero b. 

so, choose a value of k z such that this condition is met, in that case this equation can be 

solved by expanding omega equal to omega prime plus delta and which is also equal to k 

z v zero b plus delta and then, you get this equation dispersion relation gets converted 

into a equation for delta, giving you delta cube is equal to some factor on the right hand 

side. You multiply this by some i times two L pi and, then gives you delta is equal to r to 



the power one third Cos of two L pi by three plus i sine two L pi by three and you get a 

instability for L equal to unity. Unstable mode with growth rate. 
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Let me just mention the growth rate, this is a very interesting thing. So, the growth rate 

turns out to be quite large for this mode and it turns out to be R to the power one third 

root three by two and if you put the value of R, it turns out to be root three by two into 

omega p being square k z square upon k square upon two omega into one plus omega p 

square by omega c square to the power one third and how about omega the frequency of 

the mode turns out to be equal to omega L H upon one minus omega L H square m i 

upon m divided by k zero perp square into v zero b square to the power half. 

Now in this case, k zero perp is decided by the size of the beam and which is of the 

which is of size of the plasma, which is of the order of, I would say simply k zero perp is 

of the order of pi upon R 0 b, R z 0 plasma. So, this is a very interesting way of 

generating these waves and studying some non-linear phenomena. I think I like to stop at 

this point. Thank you. 

 


