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Two Stream Instability 

Today, I would like to discuss an unusual situation where the wave amplitude grows with 

time. Any wave electromagnetic or electrostatic when propagates through a medium and 

if its amplitude grows with time, then we call this wave as a unstable wave and this 

entire phenomenon is called instability. The easiest way to excite a wave is by using an 

electron beam and so in the plasma there will be two kinds of particles. The plasma 

electrons which are not having initially, a drift velocity and there is another stream of 

electrons which is launched from outside which is moving with initial finite velocity, 

finite drift velocity. So we call them as two steams of electrons, a stationary stream and a 

moving stream. And hence the sustainability is called two stream instability. 

(Refer Slide Time: 01:34). 

 

The system in which, you have a beam and a plasma is called a beam plasma system. I 

would like to begin today by describing a simple beam plasma system. Then, in such a 

system what is the physical mechanism of growth of a wave, we shall discuss that. Then 

when we begin the solution of Maxwell’s the equation of motion and equation of 



continuity, we have to start with a equilibrium, so we shall describe an equilibrium and 

then use the perturbation theory to obtain plasma response and beam response to an 

electrostatic wave. We will deduce a dispersion relation and obtain the growth rate and if 

time permits, I will discuss the saturation of instability. 
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Presentation is based on two books, introduction to plasma physics by F. F. Chen and the 

theory of plasma waves by T. H. Stix. But you can find this treatment in any book in 

plasma physics; this is a very common problem in plasma physics. 

(Refer Slide Time: 03:08) 

 



Now, consider a beam plasma system, a simplest beam plasma system. (No Audio From: 

03:08 to 03:22) Normally, you have a tube, plasma tube which is a vacuum chamber, 

long vacuum chamber may be more than a meter long and there may be a pump here to 

create a vacuum. Obviously, you create a vacuum of the order of 10 to minus 4 torr and 1 

torr is 1 millimeter of mercury pressure. And, here you have to launch an electron beam, 

so this is a gas at low pressure and then you have a very special kind of gun which has 

two rods to which a tungsten filament is tied and then you have a outer cover a cylinder 

which has a hole here. 

The potential difference between these two rods of the order of 9 volts is given, so I will 

put a battery of 9 volt here, between these two. And this hole, this outer cover is treated 

as anode is normally grounded, but a potential difference between these two, a huge 

potential difference between these two is given. So, what happens that, this small battery 

heats the electrons in the tungsten filament, the electrons come out from here. They are 

pulled by the electric field in this gap region which is applied a potential difference of V 

0, then the electrons come out and they form a beam. 

When the beam travels through a gas, it ionizes the gas and creates a plasma. So 

typically, it will produce a plasma in this region, the gas is ionized outside, but in the 

inner region this is, so this is plasma. So, you have created a beam plasma system, in this 

region there are electrons of the beam, there are electrons of the plasma and there are 

ions, this is goes to the pump. In order to have a better confinement of the beam so they 

does not diverge normally many systems have a magnetic field here by using a coil here, 

this is the schematic of a magnetic field coil. 

So, by passing means this is a actually a solid order turn that is wrapped over this 

chamber and by passing a current in that you can produce a magnetic field in this 

direction. But magnetic field is not necessary for the growth of instabilities. In fact in the 

presence of magnetic field a new, a very new different kinds of plasma modes exist and a 

new kind of instabilities appear. But even if this magnetic field is not there, you will 

have the two steam instabilities, the basic instability, the growth of plasma wave by the 

electron beam. 

This is the simplest schematic. The beam velocity is controlled by the beam voltage; the 

voltage of this gun, this entire thing is called electron gun or a diode. And the beam 



velocity you can easily say that half m V square, the beam velocity is equal to twice e V 

0 upon m under the root. Here e is the magnitude of electron charge, m is the electron 

mass rest mass and this is the velocity that you will get there. Usually such beams have 

only milliampere current. If you want a large current and one can produce beams which 

can carry currents in the several amperes or even kilo amperes, then you require to 

design a different kind of beam. 
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One possible configuration is called field emission diode. A field emission diode is 

something like this; you do not have to heat the cathode. A field emission diode has a 

plate here and a hole here. On this cathode plate you have a knife edge a circular knife 

edge, very thin knife edge. I have drawn these two lines here, but essentially it is a ring. 

So, this is a circular ring of this diameter, being a knife edge and the distance between 

these two this is a cathode and this is anode. The potential differences between these two 

if you give of the order of a million volt and the separation you keep here of the range of 

the order of about a few millimeter, then the even if this is cold due to field emission 

electrons are emitted from here from these knife edges and they will get out here. They 

will give you, what we call as the hollow electron beam. 

So the electrons will be coming out here, actually you can have a circular hole here, they 

will come out here, electron here and electron there and this is a circular symmetry. So, 

this is we call as the hallow electron beam. And this is what we call as the field emission 



diode. This is cathode, this is anode, this is field emission diode and it is used in free 

electron laser. Free electron laser is a very powerful device to produce coherent 

radiation; coherent electromagnetic waves over a wide range of frequencies and the 

frequency of radiation can be controlled by the beam energy which is controlled by the 

beam voltage, the voltage that we apply here. So, this becomes a tuning parameter, you 

can this brings in tune ability of the frequency of radiation. 

Anyway today, I like to discuss the physics of how an electron beam can generate a 

electrostatic wave? In one of the next lectures, I will then discuss how an electron beam 

can generate an electromagnetic wave? In a traveling wave tube or Cerenkov free 

electron laser normally, we have an electron beam that produces an electromagnetic 

radiation. So, these two issues I am going to address in these lectures, so let me begin 

with a simple problem of generation of a wave by an electron beam. But before I venture 

into that analysis instability analysis, I will I have to discuss the physics, but before that a 

word about equilibrium. 

But I am considering some sort of a plasma and suppose this is a region of plasma in 

which an electron beam is launched. What will happen? Initially, when the beam was not 

there the plasma has, suppose a free formed plasma, it has equal number of electrons and 

ions. So, there is no space charge anywhere, but when the beam goes in certain regions, 

suppose this is the region where the beam goes, so temporarily there is an excess 

electrons because additional electrons have arrived here, so there is a net space charge. 

That net space charge will do what? It will repel the electrons of this region, they really 

outward. 

The beam electrons will also be repel, but they already have a large velocity in this 

direction, so there are not move much in the transverse direction, during their passage 

but the background electrons will move. So, a steady state will be realized pretty soon 

when the net space charge in this region is not there, additional space charge move to the 

edges outside. So, in the region of interaction, this is called the region of interaction I can 

still presume a space charge neutrality, means the density of beam electrons, initial 

density of beam electrons, initial density of plasma electrons is equal to initial density of 

ions in the system. This is the equilibrium that you will obtain. 



So, my issue now is, I do not want to consider the effect of finite transverse size, I will 

consider the propagation of a large cross section beam through a large plasma ignoring 

any boundary effects. How the beam gives rise to the growth of amplitude of this, a 

plasma wave in the system? This is the issue. 

(Refer Slide Time: 13:51) 

 

Now, physically what do you except? If a beam has to generate a wave it should have 

three properties. First property is that the beam should be slow down by the wave, beam 

must be slow down by the wave. How can it slow down the wave? If my beam is going 

in this direction for instance z direction, this is the beam velocity equilibrium velocity in 

the z direction, then the wave electric field must also be in the same direction. So, that 

this velocity beam is slowed down, means E must have a component in the direction of 

the beam velocity. This is one should not be 0, this is very important condition. 

Second condition is that the frequency of the wave as seen by the beam should be small. 

We have seen that the response of electrons to any electrostatic field is inversely 

proportional to frequency. So, what you require is that, the frequency of the wave as seen 

by the beam should be nearly 0. If the wave is of frequency omega and k is the wave 

number, then the Doppler shifted frequency is omega minus k dot beam velocity. This 

should be nearly 0. Because we know that response of electrons, the drift velocity 

electrons acquired due to a wave or density potential, there is a acquire is inversely 

proportional to frequency, smaller the frequency larger the response. So, the effective 



frequency, this is the effective frequency of the wave as seen by moving electron, this 

should be nearly 0. This condition is also known as Cerenkov resonance condition, 

Cerenkov resonance (No Audio From: 16:24 to 16:31) this is a very important condition. 

And third thing, any electrostatic wave has electric field in one direction in some region 

and the electric field opposite direction in some region. So, physically you would except 

that, if I launch a wave and the beam together then somewhere the beam will be retarded 

by the wave and somewhere this will be exceeded by the wave. So, net energy transfer is 

possible when the more electrons are retarded by the wave, so that they given (( )) wave. 

So, there should be net bunching of electrons in the retarding zones, bunching of the 

beam electrons. 

These three conditions must be satisfied. Well, with an electrostatic wave this is possible, 

because if I launch an electrostatic wave in the direction of a beam, then the wave has a 

longitudinal component so this condition is satisfied. This is also possible because phase 

velocity of a plasma wave could be less than beam velocity or comparable to beam 

velocity so this condition can be satisfied. And, we have to see how bunching is possible. 

This physically I would like to explain before I venture into the mathematical analysis. 

(Refer Slide Time: 18:13) 

 

So, let me explain this mechanism of electron bunching. (No Audio From: 18:11 to 

18:18) I think this is the crux of two stream instability. But I am considering a wave, 



electrostatic wave with electric field E z with some amplitude A say cos omega t minus k 

z, this wave has a frequency omega and it is travelling in the direction of z with phase 

velocity omega by k. I would like to understand the inter effect of this wave on a electron 

beam which is moving with velocity v 0 v in the z direction. In order to understand this 

interaction between electron beam and the wave go to a frame of reference moving with 

velocity of the wave, moving with velocity of value omega by k, magnitude in the z 

direction. 

So, if you go to a frame of reference moving with this velocity in that frame, the 

frequency of the wave Doppler shift frequency of the wave will be 0. So, in this frame 

the electric field will be like this. So, let me write down the electric field of the wave in 

this frame. 

(Refer Slide Time: 20:22) 

 

So, in the moving frame you get E z is equal to A cos k z prime, z prime is the coordinate 

z coordinate the moving frame. Now, please plot this as a function of z prime. If I plot E 

z as a function of z prime, what do I get? This is A cos function, it will have the sort of 

variation. (No Audio From: 21:05 to 21:16) 

Please remember this is the region where E z is negative, so this is the electric field in the 

backward direction. And, because the electron has a negative charge so this is called the 

accelerating zone. This is called the retarding zone, because the electric field is positive 



in the forward direction. So, here I can call this as retarding zone, because if the electrons 

are going in the forward direction the force on them will be in the backward direction, 

they will be retarded. And, this is the region called accelerating zone, this is accelerating 

zone, this is also accelerating zone here. So, there are alternate zones where electrons are 

retarded and accelerated. 

I want to understand the interaction of an electron beam with such a wave. In the plasma 

electrons are all everywhere and the wave also exists everywhere, so suppose those 

electrons are there, these are the electrons I am locating and so on. These are the 

electrons that I have located indicated. There are three possibilities that these electrons 

are travelling with the same velocity as the wave. So, one case when beam velocity is 

equal omega by k v 0 b there, equilibrium beam velocity is equal to phase velocity of the 

wave, what happens in this case? 

In the moving frame, the electrons will look like a stationary. So, in this region the 

electric field is positive and in this region the electric field is negative, so what happens? 

Electrons here would like to move in the backward direction and here the electrons will 

like to move in the forward direction. So, this is the boundary, actually what happens? 

The electrons here, they are experiencing a forward force. So, if you look at any 

boundary, the number of electrons crossing the boundary will be same. Let us see how? 

The electrons which are here they will be going from here to here, because the force is 

opposite direction, the one which are here, they will goes in this direction. So, the net 

transfer of electrons from one area to another area will be 0. And hence, there is no net 

increase in the number of electrons in the retarding zones or accelerating zones. So, 

roughly half the electrons are retarded by the wave, half the electrons will be accelerated 

by the wave and there is no energy transfer. 

For the growth of the wave, you require more electrons should be retarded, so that their 

energy goes into the wave. So, no energy transfer, because same number of electrons go 

from retarding zone to accelerating zone, as go from accelerating zone to retarding zone, 

so no growth of the wave. Second possibility is that the beam velocity is slightly bigger 

than omega by k. In this case, what will happen? If you plot the same graph E z as a 

function of z prime, the variation is like this. So, these are our zones retarding zones, 



accelerating zones, alternately. So, this is my retarding zone and this is my accelerating 

zone, this is my accelerating zone, this my retarding zone and accelerating zone etcetera. 

Now, here the electrons are moving slightly faster than the wave, so in the moving frame 

they will look like moving. When the wave is not there, they are start looking like 

moving in the new frame. Now, the electrons which are in the accelerating zone, they are 

accelerated further. So, they will quickly move from the accelerating zone to retarding 

zone. Whereas, the ones which are in the retarding zone they are retarded, so they will 

spend more time in the retarding zone and will take long time to get out from there. As a 

result, there is a reduction of electrons in the accelerating zone and a bunching of 

electrons or increase in their number in the retarding zones. 

So, in this case, electrons spend more time in retarding zones, hence bunch over there. 

This is a important thing. So, when more electrons are getting retarded in the retarding 

zones, there is a net transfer of energy from the electrons with the beam and wave grows. 

So, this is the basic physics of energy transfer from electrons to the wave, that there 

velocity should be slightly more than the phase velocity of the wave; only then this 

phenomenon is possible. 

So, physically we have seen that the condition for energy transfer from particles to wave 

is that the beam velocity should be more than the phase velocity of the wave. Now, let us 

carry out a mathematical analysis. I think before I take up a mathematical analysis, it will 

be very useful to look at the energy and momentum conservation in this process, because 

one can view the generation of wave as a quantum process. 
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So, quantum mechanically, suppose the electron beam initial energy is equal to half m v 

0 b square. Initial momentum you can easily write is equal to m v 0 b and suppose this is 

z direction. After this electron is emitted or generated a photon, so after emitting the 

photon or phonon plasma or whatever you call, of energy h cross omega and momentum 

h cross k. Electron energy is final energy is half m v 0 square minus h cross omega and 

final momentum is equal to initial momentum m v 0 b z minus h cross k. But kinetic 

energy and momentum are related to each other and the relation is energy is equal to 

momentum square upon 2 m where m is the mass of the electron. 

Just substitute here and recognize that usually the value of h cross omega is less than an 

electron volte whereas, the value of this quantity is much much bigger. If you are 

launching an electron beam of 200 electron volt energy then this quantity 200 as 

compare to this is even bigger. So, you can ignore when you square this momentum 

square you can ignore the higher power of this and just substitute this there. And, it turns 

out to be; omega should be equal to k v 0 b. and, if there were a angle between the two 

between k vector and velocity of the electron, then there is a dot product here. 

So, this is the Cerenkov resonance condition, the same condition which we say that the 

Doppler shifted frequency of the wave as seen by the electrons should be nearly 0, the 

same condition. So, this is a another way of looking at the generation process, that if the 

electron has to really generate a wave in a resonant fashion, the wave frequency that it 



want to generate and the beam velocity should have this relationship. So, this is the 

quantum mechanical interpretation also. 

(Refer Slide Time: 32:23) 

 

Now, let us carryout the instability analysis which is rather simple. What we have to do? 

We have to begin with an equilibrium and solve the equation of motion. What is our 

equilibrium? First of all, I would write down the beam equilibrium. The beam has a 

density, n 0 b in equilibrium. It is a drift velocity; I will call this as v 0 b and this in the z 

direction. The beam has no temperature, no collisions. Let one; let us understand the 

problem in a very simple way. And, plasma electrons what do they have? They have 

density, suppose is n 0 and their drift velocity is 0, they are not moving. I will ignore the 

temperature term also for the time being and later on we will generalize, that what is the 

consequence of electron temperature? So, simple problem. 

And then, I want to say that suppose my system has an electrostatic wave, which is like I 

think I should express this in terms of the gradient of this potential. And, let the potential 

be of this form, some amplitude exponential minus i omega t minus k dot R. For the sake 

of simplicity, let me choose this is in the z direction, so k z. So, I want to find out that in 

the presence of this wave, what is the modification in the electron density and what is the 

modification in plasma electron density? What is the modification beam drift velocity 

and plasma drift velocity? So, first of all I will write down the equation for the beam. 
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So, let me calculate the beam response. (No Audio From: 34:37 to 34:47) The equation 

of motion is m delta v by delta t plus dot del v is equal to minus e e which is e grad phi. 

There is no magnetic field; I am ignoring the pressure term and collision term. This is the 

beam response is governed by this equation. Please understand, phi is the potential of the 

electrostatic wave which is a small quantity and v is the response. 

So, I can write down v as the original velocity of the beam. Actually, this equation is 

been written for beam, so I will use a subscript b to designate the beam quantity. So, 

beam velocity is equal to original beam velocity plus a change in beam velocity due to 

the wave. But this change is very small, because it is caused by a small perturbation phi. 

So, any product of v 1 v with v 1 v will be ignore and whenever we solve the equation of 

continuity, the density will be also expended like this, original density plus some 

perturbed beam density due to the wave. 

Substitute this in this equation. So, when I differentiate delta v 0 b with time, this is 0 

because this has no time dependence. So, this derivative goes away, only this term will 

survive. And, when I substitute these two terms in here, I get four terms. But please 

remember, v 0 b does not depend on position. So, when you simplify this four terms only 

one term survives, because product of v 1 v with v 1 v is ignored. So, this equation and I 

will divide this by m, take the following form delta delta t of v 1 v plus v 0 b, which in 

the z direction so only derivative with respect to z is to be retain and v 1 b is equal to e 



grad phi upon m. so, this is the equation of motion after linearization. In the quasi steady 

state response should have the same time and z dependence as the source. 
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So I will replace delta delta t by minus i omega, delta delta z by i k and this equation 

gives v 1 b is equal to minus e k phi upon m, this is z component let me write this like 

this upon m. And, here you will get omega minus k v 0 b, you may appreciate the 

effectiveness of Cerenkov resonance condition, that whenever omega is close to k v 0 b, 

this becomes nearly 0 and this becomes huge. So, that is the advantage of having 

Cerenkov resonance condition that the response of electrons to a very small perturbation 

of the plasma wave will be huge, if this condition is satisfied. 

Now, you can solve the equation of continuity which is delta n 1 for the beam delta delta 

t plus divergence of, there are many terms density into velocity products. So, this is n 0 b 

plus n 1 b into v 0 b plus v 1 b, this is the equation of continuity I have written. Please 

remember, n 0 b and n v 0 b product does not depend on position, so this will be 0. n 0 b 

into v 1 b certainly will be finite, n 1 b with v 0 b will be finite, but n 1 b and v 1 b 

product is too small, so we will ignore it. So, then this equation becomes delta n 1 b delta 

t plus this has only z variation, so just let me write down delta delta z of n 0 v into v 1 v z 

and this term plus n 1 v v 0 b is equal to 0. 



Replace delta delta t by minus i omega and delta delta z by I k, you will get n 0 b v 1 b z 

plus n 1 b v 0 b. These two terms contain n 1 b, they combine together and you can 

simplify this, you will get n 1 b is equal to k v 1 b z component into n 0 divided by 

omega minus k v 0 b. Again the same denominator it was here comes in there and that 

gives rise to a resonant enhancement in density perturbation. 
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So, let me write down n 1 b expressively in terms of phi by using this equation. And, the 

result is that the beam density perturbation due to the wave (No Audio From: 41:40 to 

41:49) is n 1 b is equal to minus e k square phi upon m omega minus k z or k v 0 b whole 

square and there is n 0 is also there, n 0 b. This is a important expression, which shows 

that the density perturbation scales as a square of this resonance denominator. It depends 

on mass also universally. For ions if I had written, this will be too small and you can 

ignore it. So, I have got the density perturbation due to the of beam electrons due to the 

wave. 

For the plasma electrons the difference between the two is that beam density has to be 

replaced by electron density of the plasma and beam velocity is to be taken 0 for plasma 

response. So, plasma electrons response (No Audio From: 43:09 to 43:18) simply the 

perturbation plasma density would be minus n 0 of the plasma e k square phi upon m 

omega square. And, ion density perturbation I take to be 0, because ion mass is too 



heavy. So, if I know the density perturbations of all the three spaces, I can solve the 

Poisson equation. 

(Refer Slide Time: 43:57) 

 

So, the Poisson equation is del square phi is equal to e upon epsilon 0 into electron 

density plus beam electron density minus ion density, in equilibrium all these sum to 0. 

But in case of perturbation this will be e upon epsilon 0, plasma electron density 

perturbation plus n 1 b del square I replaced by minus k square phi, use this n 1 and n 1 b 

in terms of phi. Then this equation takes the simple form 1 minus omega p square, 1 is 

equal to omega p square by omega square plus omega p b square upon omega minus k v 

0 b whole square. 

Where I have used two symbols omega p and omega p b, which I am going define in a 

little while. This is called beam plasma frequency, it depends on beam density. omega p 

is the plasma frequency of electrons of the plasma called electron plasma frequency, this 

has a term which is called resonant denominator. Even though the value of omega p b is 

tiny, I think it will be better I should write this omega p b here. Beam plasma frequency 

is defined as beam density in equilibrium e square upon mass of the electron into epsilon 

0 to the power half which is of the order of 50 under root of beam density. 

In beam plasma systems, beam density is much smaller than the electron density of the 

plasma. But because of this resonance this term could be comparable to this term that is 



the beauty. So, Cerenkov resonance is a important thing in bringing the response of beam 

electrons to comparable to the contribution made by the plasma electrons and not only 

that, this has in it built in this relation. A possibility of omega being complex, please see 

this is a fourth order equation in omega and it may have a complex root with positive 

imaginary part and that is called the instability. So, I would like to simply solve this 

equation. There are two cases in which this equation has been solved and studied in great 

depth. 

One when omega p b is small and other case, when omega p b is the same as omega p. 

That is a very special case, people have studied that. But the most common case is the 

one in which beam density is small as compared to plasma density and hence this term is 

small. Numerator here is small than the numerator here, let us see. 
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So, I will consider today, the case when omega p b is a small and I would like to solve 

this equation. I can rewrite this dispersion relation as 1 minus omega p square upon 

omega square means, I have taken the plasma term, plasma electron term to the left and 

beam term I will keep on the right. Omega minus k v 0 b whole square, I can take l c m 

here and rewrite this equation as omega a square minus omega p square into omega 

minus k v 0 b square is equal to omega square into omega p b square. Well, this equation 

is fourth order in omega and is very difficult to solve for arbitrary values of k. For a 

special value of k solution is simple and first of all I would like to find out, that the case 



for which this equation is solvable analytically. That is also the case of largest growth 

rate. Let us see how. 

Please note one thing in here. I can rewrite this equation by dividing both sides by this 

factor, so what do I get? omega minus k v 0 b, then I get is equal to omega omega p b 

into under root of omega square minus omega p square, means what I have done? I have 

divide this equation by this factor and take the square root. So, I get the sort of 

expression. This says that omega is equal to k v 0 b plus additional term. So, omega 

becomes is equal to k v 0 b plus omega omega p b upon under root of omega square 

minus omega p square. So, when omega p b is a small, this term will small and omega is 

nearly equal to k 0 k v 0 b. However, near omega equal to omega p, we expect that this 

contribution will be huge. And, if omega is close to omega p, but slightly less than 

omega p, this will be imaginary. 

So, you expect a very large growth rate, when omega is close to omega p, but because I 

am presuming this term to be small so omega is also close to k v 0 b. Means, when 

omega is close to k v 0 b and it is also close to omega p, you expect a large growth rate. 

So, what I am going to do? I am going to solve this equation, in the special case when 

omega p is equal to k v 0 b. Because in that case, whenever this factor is small this is 

also very small and hence the right hand side though very small, will make a significant 

contribution or modification in these roots. 

So, driven by this logic, I am going to solve this equation in a special case when k v 0 b 

is equal to omega p. It is a general technique of solving a complicated dispersion relation 

in plasma physics, that please look at the roots the zeros like here one 0 is that omega 

equal to omega p, second 0 is that omega is equal to k v 0 b. So, we are looking for the 

simultaneous possibility that this is nearly 0, this is also nearly 0. So, that a tiny term on 

the right hand side makes a significant contribution, because this is the only source that 

can bring instability. If this term is not there, if this term is not there, the root of this 

equation is simply real. So, the instability is expected to come from the beam, though the 

density of the beam is a small we are considering. But still, it could have a significant 

influence over the wave, if these two are 0 simultaneously. 
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So, we solve this equation for omega p is equal to k v 0 b, then we say that omega is 

equal to say omega p plus some delta which is also equal to k v 0 b plus delta. Use this in 

that dispersion relation and assume that delta is smallest compare to omega p. So that, 

higher powers of delta can be ignored. When you use this in that expression, the first 

term omega square minus omega p square gives twice omega p delta. The second term is 

omega minus k v 0 b whole square which gives to delta square again, the right hand side 

is omega square omega p v square. 

So, here you get delta q is equal to omega p b square and this omega I will put nearly 

equal to omega p, so, omega p upon two. Now, this is a cubic equation in delta you 

should have three roots to find three roots of this I multiply by this quantity by a quantity 

called i l into 2 pi, because for integers the values quantity is unity. So, you can always 

multiply this quantity by this say sort effective. So, delta turns out to be equal to omega p 

b square into omega p upon 2 to the power one-third into exponential of i l 2 pi by 3, take 

one-third of this cube root of this quantity. 

This I can write as cos of l 2 pi by 3 plus i sin l 2 pi by 3 where l is 1, 2, 3, 0 1 2 3 4 5 

etcetera. But you will note that for l equal to 3 this will have the same value as for l equal 

to 0. So, the three independent roots are l equal to 0, 1 and 2 others are then repeated. 
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Now, let me simplify this expression. Means write down this expression in terms of cos 

and sin. So, delta is equal to omega p b square omega p by 2 to the power one-third cos l 

into 2 pi by 3 plus i sin l 2 pi by 3. For l equal to 0 this has no imaginary part, but for l 

equal to 1 this has the imaginary part. Please remember, your frequency is omega p plus 

delta. I am looking for a solution where omega has a positive imaginary part, so that the 

wave amplitude grows with time, so I am looking for delta to be positive imaginary. 

For l is equal to 1, delta has positive imaginary part. And hence, the frequency will be 

complex with a positive imaginary part. And, imaginary part of omega is the same thing 

as imaginary part of delta is called the growth rate. Growth rate is called gamma, which 

is the imaginary part of omega, which is the imaginary part of delta. And, if you 

calculate from here put l is equal to 1 in these expressions, imaginary part will give you 

root 3 by 2 and becomes root 3 by 2 into omega p b square into omega p by 2 to the 

power one-third. 

So, growth rate and how is the amplitude vary? Electric field of the wave, which is z A e 

to the power gamma t into e to the power minus i real part of omega into t minus k z, this 

is the field. So, this is the amplitude of the wave, now it is growing with time and growth 

rate scales with beam density and electron density, it increases with both of them. And, 

this is a very important result. So, we have seen that if the beam velocity is very close to 

omega p, then the phase velocity of the plasma wave. In that case the beam can give 



energy to the wave. Further implications of this, we will discuss in our next lecture. 

Thank you very much. 


