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For a system with group symmetry G, I have just said all these things, now I am just repeating

for summarizing. The transition from an initial state to due to interaction, interaction is given

by some operator O; there is an initial state n and a final state m and I want to find whether

this result is going to be zero or nonzero, it is what I said. So, you have to remember that the

initial state belongs to one irrep, let us call it as alpha. Final state should belong to another

irrep, need not be the same irrep, right. 



This transition was not between the same irrep, this transition is between the same irrep. So, it

does not really matter, it belongs to one irrep alpha initial state; final state belongs to another

irrep beta. Alpha and beta could be same, alpha and beta could be different ok. And then the

interaction operator also belongs to one of the irrep; if the interaction of a operator is

associated with an observable, so that also you can give it as a irrep. Idea is that, the integrand

involves tensor product of the irrep associated with the final state, irrep associated with the

initial state, irrep associated with the observable ok.

The transition is allowed if the tensor product allows A 1, clear. In all these 1 D, you just got

A 1, right. If you are doing C 4 v, there is a E cross E which could give you A 1 plus A 2 plus

something, right. So, you need to see at least A 1 should be there in the tensor product; the

irrep one of the irrep should be a A 1, then only it will be nonzero. So, this thing which I have

written, in principle could be a linear combination of; if it had a combination this will be zero,

but that could give you nonzero. 

So, in this 1 D there is no problem, you can see that from this table that it is only A 1; you do

not get a linear. Why you do not get a linear combination? 1 D irrep with 1 D irrep has to give

you only 1 D irrep, it cannot give you a 2 D irrep to write a linear combination; but E cross E

can give you. So, let us do some examples.

Student: Do we have (Refer Slide Time: 3:09). 

So, such things happen then we need to figure out how to do it; but right now I am saying

most of the operators will have some associated with the symmetry of the system ok. I agree

with you ok. C 4 v is the two dimensional particle in a box ok.



(Refer Slide Time: 03:31)

So, if you take C 4 v and look at electric dipole moment transition for system with C 4 v

group symmetry, you have to first have this character table with the binary basis, primary

basis and so on, ok.

So, first of all initial state let say is an A 1 irrep, final status in A 2 irrep and I want this to be

triggered by the dipole moment operator. Dipole moment operator belongs to the x and y

component belong to E dimensional representation, z component belongs to A 1

representation, right. If you take the z component, you can show that A 1 times A 1 times A 2

is A 2, right you agree ok.



(Refer Slide Time: 04:32)

The initial state belongs to an A 1 irrep; if suppose I want to look at the z component, it

belongs to also A 1 irrep, ok. So, you can see that A 2 times A 1 times A 1 will be; A 1 and A

1 are like identity, it has to be A 2, right. So, you can write this as sum phi which belongs to

A 2. And the great orthogonality theorem says that; A 2 is not A 1, it has to be 0, clear.

Which wave function in the two dimensional particle in a box belongs to A 2? The one with

eigenvalue minus 1, which one will happen; n being odd or n being even, you can check it. N

being even may be A 1 and n being odd will be A 2 or something just check; check which one

is the one which can belong to the and then you can do that elaborately and check that these

two answers are actually one and the same, is that clear.

Other thing is P x and P y; P x and P y belong to E, right. So, if I try to take psi star A 2 P x or

P y, I do not worry. So, this should be element of A 2 tensor product E tensor product A 1,



right. A 2 with E you can check in the character table, A 2 with E is again E ok; you can

multiply in the character table. If you multiply A 2 with E; because the negative 1s are all 0

here, A 2 with E is exactly E again. 

So, A 2 with E is E and E with A 1 will be again E; you all with me. What does it tell us?

This transition whether it is x component or y component will also not happen. So, once I

have found all the components is not possible, I make this statement that A 1 to A 2

transition; I am not even saying, I do not even know what are the levels and what are the

energy, I am just saying if the initial state belongs to an irrep A 1 and final state belongs to an

irrep A 2.

Due to an interaction which is the electro electric dipole moment operator ok, none of the

components will trigger such a transition from A 1 irrep to A 2 irrep. So, it is a forbidden

process, are you all with me. I do not done any algebra anything, I am just arguing some

group theory character table and using great orthogonality theorem that has to be 0, I am just

saying this like this is.

This is something which you also do in quantum mechanics, Wigner Eckart theorem in the

continuous version is mimicking this ok. So, we will see at that point exactly what is

happening there. This in the discrete context using great orthogonality theorem, forces that

the integrand has to belong to a unit representation or it should at least contain unit

representation ok. If you had e cross e cross e, it could give you a lot of linear combination, it

should have A 1 in it; if it has A 1 it is nonzero, if it does not have A 1 it is going to be 0 ok.

So, this is one thing which you have to remember and sometimes what people do is, that they

just confined to the initial state and the final state; sorry initial state and the operator or final

state and the operator and see what you get out of this. If it is same as the initial state ok, you

will you can be sure that you will get a A 1 unit ok. If you have seen E cross E will definitely

have an A 1. If you have an A 1 cross A 1, you will definitely have an A 1; A 1 cross A 2

sorry A 2 cross A 2, it will definitely have an A 1.



So, the same irrep tensor products typically will contain A 1. So, this has some other

combinations, but any same representation tensor product will contain an A 1 ok. So, you

could do a combinations of these, not to do all the three, two of them tensor product; if it is

same as this one, here anyway it is A 1. So, it is trivial, but suppose this was A 2; then you

know this product if it is A 2 or if it contains A 2, you can still argue that you will have the

transition allowed, ok. 

This is alternate way of doing, just looking at tensor product of one initial state with the

operator; if you get in that irrep, the same as the final state irrep then you get this argument

that this will be associative properties all I am saying, ok.

Student: Maam.

Yeah.

Student: (Refer Slide Time: 11:23) instead of if that last A 1, if greater than (Refer Slide

Time: 11:27). 

Yes.



(Refer Slide Time: 11:29)

Student: (Refer Slide Time: 11:29) some of A 1 and A 2 will give nonzero.

If it contains A 1 in that sum, you still get it to be nonzero. 

Student: To be.

Get it to be nonzero. So, as an example I put one more complex example here. So, let us look

at the octahedral group, which is some of you have tried to work out this character table. You

know that as a group symmetry there is some isomorphism between octahedral group and the

tetrahedral group with this diagonal mirrors right; 24 elements, both of them have 24

elements.



Octahedral group is a pure rotation group; this T d group has improper reflections also ok,

there is some subtle difference. So, that is why I have put the first line as octahedral group

elements, which is pure rotations and then the second line as the tetrahedral group elements

which involves roto reflection in it, ok. Character table are one and the same, ok. And we can

now look at where is the x y z component fitting in, it turns out that the x y z component fits

into the irrep F 1 for the octahedral group, ok.

You can start doing F 1 times A 1 see what happens; I said no with unit representation F 1

times A 1 is F 1, F 1 times A 2 will turn out to be F 2 and so on. So, you can start doing this

exercise; leave it you to check this ok. In the character table you know how to do the, the left

hand side will be reducible F 1 cross E will be 6 cross 3 into 2 6 cross 6 matrix and it will be

a direct sum of 2 3 cross 3 irreps. These things you can work it out by looking at this

character table. 

Once you have this all these things, the tensor product of three things which we want to do

becomes easy. If you have it on your screen, all possible tensor products from looking at this

character table; then you can start arguing which transition is allowed which transition is

forbidden, ok. 

According to this diagram and the basis which have written; I have just written the primary

basis, F 1 has electric dipole moment operator. So, if you want to look at this transition

between A 1 and A 2 due to F 1; F 1 times A 1 is F 1, it is not equal to A 2. So, you will

never be able to achieve A 2 out of it. So, it will be forbidden, is that clear. 

Similarly you can also use the Q x y, Q x z and Q y z as the three dimensional irrep which

belongs to F 2 of the octahedral group and you can show that, you can start looking at

whether there is a transition due to elect quadrupole moment itself, ok. I will give you some

problems to work on these that way you get a feel of how to do things, some one or two

problems on selection rules and that will clarify how the selection rule works, is a theme

clear. 



(Refer Slide Time: 15:44)

So, this subtlety I have already said, whenever you have only pure rotation you cannot

distinguish a polar vector from axial vector. But once you have improper transformation like

reflections, then axial vector is going to be different from polar vector. And this I will give it

as an assignment for you to do D 3d, how to find the selection rule for electric dipole and

magnetic dipole transition. So, you take the character table with the basis from the literature

and then you work it out, ok.



(Refer Slide Time: 16:23)

So, then the next other application of what we did for character table basis states and so on, is

to look at vibrations in a molecule, ok. A molecule is made of atoms, you can treat that the

atoms are connected by kind of a spring with stiffness. They are all going to undergo various

vibrations. I am not looking at translation, I am not looking at rotations; I am only looking at

relative vibrations.

Suppose you had two atoms together, it can either go; you know there is only one direction in

which it is going to oscillate and you get this characteristic frequency, right which is

something which you all do. If you had a two atom, you can go into a reduced mass system

and treat as if it is undergoing a simple harmonic motion with frequency omega. 

Student: There will be two omega, right (Refer Slide Time: 17:32).



Which one?

Student: Two, there will be 2 omega right one translation (Refer Slide Time: 17:36).

No the translation I am not looking at, translation is both going together; the vibration is what

I am looking at, both coming in and going out, is that clear. This going is a translation, I am

not looking at it, good; some things are getting erased here, so it is ok. So, what I am saying is

that there is a classical problem of two masses connected by a string, by a spring actually of

stiffness kappa. 

And you know that there is a definite well known frequency for two masses and that is given

by the stiffness constant and the reduced mass, you know this; vibration slight displacement

where it creates vibration, not the translation mode as he was saying. But suppose you start

increasing the number of masses in the system and need not be linear, it could also be

non-linear like molecules, like ammonia molecule or water molecule; then they also have

vibrational degrees of freedom, besides translation and rotation which I am going to remove. 

How do I find those vibrational degrees of freedom? I will not be able to find the frequencies,

but I should be able to find how those atoms are going to vibrate which belongs to different

vibrational modes. So, as the number of masses increase, the oscillatory motion; if you give a

slight disturbance to the molecule it undergoes oscillatory motion. It will be very

complicated, I will show you a video; just it is there on the net, but it is nice to see in this

context of what you do as an algebra. So, the oscillatory motion is very complicated beyond

two masses, you know you have to start working it out. 

I am sure you would have done tri linear molecule in your class, in classical mechanics. And

number of vibrational degrees of freedom, if there are N atoms; 3 N will be the total degree of

freedom in three dimension. Three overall translation you can remove, all the atoms

translated by a constant vector is not a degree of freedom and there are three directions for

translation. Similarly there are three directions for rotations, you can rotate you remove them,

ok.



So, the number of vibrational degrees of freedom for such a molecule with these atoms is

going to be always 3 N minus 6. If it is a linear molecule, one of the rotation about that axis is

not there; so you do not have three rotational degrees of freedom, only 2 rotational degrees of

freedom.

(Refer Slide Time: 20:46)

So, in that case it will be how many vibrational degrees will be there; 3 N minus 5 ok. So, this

is what is the theme and for any complex system with s vibrational modes; you can write a

Lagrangian involving the slide disturbance away from equilibrium position and you can try an

diagonalise such a Lagrangian, right.

M is some matrix which is x cross x matrix, K x another matrix; K has the potential energy;

M is the one which incorporates the kinetic energy. So, it is kinetic energy minus a potential

energy for a system with complex system or complex molecule; but so many atoms which



gives you s vibrational degrees of freedom, right. So, this is the one where you will start

finding by diagonalising it, you get your conventional harmonic oscillator; but then L will be

s of them and you can determine what are these normal modes, ok. 

This I am sure you would have done as an algebra in your classical mechanics. The course

here is not to do that algebra, but to get a feel of it from the character table, ok. 

(Refer Slide Time: 22:19)

What we cannot get is, we cannot determine the explicit frequencies; but we can determine

those normal modes. For example, you take a non-linear triatomic molecule; one of the

examples is your water molecule, right. What are the normal coordinates is the question, you

can ask.



(Refer Slide Time: 22:37)

So, the normal coordinates are nothing but this atom is getting disturbed or it moves this way

and this atom is moving this way. That is one vibrational mode of vibration, one vibrational

mode ok; one normal mode, we call that as a normal mode. There is an equivalent

description, instead of doing this even in the two atom thing you do it right; going inside or

going outside are nothing but it is a simple harmonic motion. So, these two are equivalent.

Other cases a situation where both of them are undergoing stretching; this is asymmetric, this

one is symmetric and the third one will be the bond angle can keep changing.

So, you can have these three vibrate; how many modes are there for three non-linear triatomic

molecule, 9 minus 6 which is 3 vibrational modes. The three vibrational modes are these

objects which have pictorially shown; can we see these pictorially shown objects from our



character table, projection operators and get these three objects, ok; so that is the theme and

let us end with this 10 minute of video.

(Refer Slide Time: 24:14)

This is a chem study film, for use in the chemical education material study course in

chemistry. 
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Molecular vibrations are often studied experimentally with the aid of the infrared

spectrophotometer. The molecules of a gas in an absorption cell will absorb certain

frequencies from an infrared beam, depending upon their particular structures and modes of

vibration. Let us examine a random mixture of gas molecules to gain a better understanding

of their movements and structures.



(Refer Slide Time: 25:46)

In slow motion we can see that all these molecules have translational motion. Molecules

containing more than one atom can also rotate and vibrate. In this film we consider only

vibration, movement which changes the inter nuclear distances.
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Sometimes vibration is simple and firm as in this diatomic molecule.
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Sometimes as in this formamide molecule it is complex; but what appears here to be a general

vibration can be resolved into simpler basic vibrational patterns which are known as the

fundamental or normal modes of vibration.

Observing closely some of the normal modes of vibration of the formamide molecule, we can

see that each vibrational mode has a different frequency and all of the patterns of vibration

may be different. Each of the vibrations is a simple harmonic motion and all of the atoms

executing this motion are moving in phase, passing through their center or equilibrium

positions at the same instant.



(Refer Slide Time: 26:54)
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The number of possible modes of vibration a molecule may have is determined by the number

of atoms it has. And for non-linear molecules it is 3 times the number of atoms less 6. Let us

see how this result is derived.
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First in order to get the location of an atom in space, it is necessary to specify it is three

coordinates. 



(Refer Slide Time: 27:31)

If N represents the number of atoms in a molecule, it follows that a total of 3 times N

coordinates are required to specify the positions of all the atoms. There are many ways of

designating these positions in space; for our purposes however, we choose a particular set of

linear and angular coordinates.



(Refer Slide Time: 27:47)

First three of these 3 N coordinates are used to locate the position of the center of mass of the

molecule.
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Next we require three angles to specify the orientation of any non-linear molecule. 1.



(Refer Slide Time: 28:09)

2.
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3.
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Thus 6 coordinates are needed to establish both the position and orientation of the molecule;

1, 2, 3, 4, 5, 6. 



(Refer Slide Time: 28:37)

Since we know it takes a total of 3 N coordinates to specify the positions is all it is atoms; the

remaining coordinates therefore, locate each atom with respect to the others in the molecule.

One such set of internal coordinates in the water molecule includes the two hydrogen oxygen

bond lengths and the angle between them.

Now, the positions and orientation of the molecule as well as the relative positions of the

atoms within the molecule are continually changing. The total motion may be described in

terms of these 3 N coordinates.



(Refer Slide Time: 29:05)

While the internal motion or vibration alone is specified by these 3 N minus 6 coordinates.
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It is possible to find a set of 3 N minus 6 coordinates, such that the complex vibrational

motions may be resolved into 3 N minus 6 simple harmonic motions called normal modes of

vibration.
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Therefore, in all non-linear molecules there are 3 N minus 6 normal modes of vibration.
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Since the water molecule contains 3 atoms, it has three normal modes of vibration.
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And a symmetric stretching motion, another motion which is symmetric stretching and partly

bending of the molecular bond and a third motion which is mostly bending. The frequency of

each of these modes of vibration is determined by the masses of the nuclei of the atoms and

the strength of the bonds between them. In heavy water for example, the frequencies are

lower; because the deuterium atoms have greater mass than the hydrogen atoms.



(Refer Slide Time: 30:14)

For any linear molecule such as this one of carbon dioxide, the formula for the number of

normal modes becomes 3 N minus 5; because only two angles are necessary to specify its

orientation in space.



(Refer Slide Time: 30:28)

1
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2 The third angle is unnecessary, because neither infrared light nor ordinary collisions impart

any rotation around the long axis of a linear molecule.
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This means that the vibrations of carbon dioxide can be resolved into 4 normal modes.
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Two stretching modes; a mode which is asymmetric and a mode which is symmetric.
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And two bending modes which have the same frequencies, because the same bond strengths

and atomic masses are involved. Vibrational modes which do have the same frequency are

said to be degenerate. Let us view them from head on.
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The degenerate modes combined to make a single motion. In this head on view the motion

appear is elliptical.
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Next let us examine methane which has five atoms to determine it is modes of vibration.

According to the formula, it is vibrations can be resolved into 9 normal modes.



(Refer Slide Time: 31:47)

One mode is this totally symmetrical stretching mode also called breathing mode. When we

examine it is next two modes of vibration, we find that because of the symmetry of methane

their frequencies are the same.
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The result is a doubly degenerate bending vibration.
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When we look at the next three modes, we find that since the masses and forces are identical.
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These modes combine to give a triply degenerate vibration. This is the asymmetric stretching

vibration of methane.
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The remaining three modes are also triply degenerate. This is the triply degenerate bending

vibration of methane. So, we see that though methane vibrations can be resolved into 9

normal modes, there are only four frequencies of vibration that are different.
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Therefore, methane is a good example of a degenerate system.
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A mode of vibration may take on different amplitudes depending on the amount of energy in

the molecule. The movement of this carbon monoxide molecule represents it is vibration in

its lowest energy state. By collisions this carbon monoxide molecule can be raised to states of

higher energy which have the same frequency, but greater amplitudes. By the same means, a

molecule can drop back to lower energy states. The same thing can occur through the action

of light by absorption or by omission.



(Refer Slide Time: 33:59)

In a polyatomic molecule, water for example; its several vibrational modes may be

individually excited or excited in any combination with one another.
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In any molecule the amplitude of vibration increases and also decreases by distinct jumps;

because vibrational energy is gained or lost only by definite quanta. Therefore, a molecule can

possess only certain discrete levels of energy.
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When a molecule absorbs energy to increase it is vibrational level, it generally absorbs light

of the same frequency as one of its normal modes.
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So, by measuring the frequencies of light absorbed, the frequencies of its several normal

modes of vibration are measured.
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From these vibrations, we derived information regarding energy levels and strengths of

chemical bonds. Certain vibrational frequencies are characteristic of certain chemical bonds

and serve to reveal their presence in complex molecules. Raman spectra nuclear magnetic

resonance and microwaves also reveal the details of molecular structure.
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But close to the structure of many important compounds, penicillin for example, have been

furnished by the infrared measurement of their molecular vibrations. 
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