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So, someone was asking what molecules have, what symmetries and so once I thought if you

get a feel of it, so this (Refer Time: 00:24) website is very beautiful. 

(Refer Slide Time: 00:29)

So, you can start going on to see what are the molecules and then there is animation on the

right hand side, you can do the animation to see whether it has any other you know this is the

C 2 symmetry where if you keep track of one you can see that it goes to the diagonally

opposite point and so on. So, you can see the mirror reflection for example along the sorry,



this is C 2 along the y axis ok. So, C 2 along the y axis this left right symmetry you know, it

goes can you see it, it is the left right symmetry.

So, this is one way in which you can see that there are various compounds or you can call it

molecules in chemistry, where they first figure out what is the symmetry possessed by the

molecule. This molecule it need not be C 2 right it could be much more than that, but they try

it out and make sure that what is a maximal symmetric group it has. So, I thought let me share

this I did send this link, how many of you tried it? I do not know how many if you tried, but

there was a super symmetric tutorial which will give you a hands on you know what are I

tried to do it in the class.

(Refer Slide Time: 01:47)

 (Refer Slide Time: 01:53)



But here, you could try and do the C 2 axis, animation, you can see that both the hydrogen

sorry hydrogen atoms move from one to the other if you do a sigma x, sigma z plane then you

see that those two atoms exchange the positions is that, ok.

So, you can get some feel on doing the animation yourself and see what molecular symmetry

is all about ok. So, I am not getting onto it there are point groups and you can check out

various things to get your clarification on the notation. I have confined to something called

Schoenflies notation, sometimes these people follow some other notation by putting you

know two bar which means bar means mirror and so on.

So, let us not get into new notations let us confined to the Schoenflies notation, where c n

means principal axis is n-fold axis. And once I put c and v then we will have a vertical mirror

containing the axis c n h means, a vertical a mirror horizontal mirror which is perpendicular



to the axis. Let us follow that notation and we are not going to follow anything other than this

notation in this course, fine.

(Refer Slide Time: 03:29)

So, so far a warm up on how to look at the molecular symmetry as I said I wanted do a couple

of problems I said tutorial today. One of the things which I passingly said is that when you do

a conjugation of element. The conjugation of the element suppose the element in the

symmetry group of degree n has some cycle structure, if you do a conjugation I said that the

cycle structure remains unaltered, it will go to a new element, but the cycle structure remains

unaltered, right. So, we can write the element in the cycle structure so if you look at the cycle

structure ok. So, aim is to prove conjugation preserves the cycle structure, ok.

So, suppose you take an element in the symmetric group looking at this element you will have

you know the there is a s 1 cycle s 2 cycle s t cycle I am not even telling what is the number



of that, this is an element which you have. Once you have this element and now let us take

that; so, we know the set of elements in that symmetry group, right. So, you have I have

calling it as a 1 1 and those are the elements which are the objects on which you do the

permutation, and the objects are such that a 1 1 object if you do a sigma, sigma by sigma you

mean a 1 1 goes to a 1 2 in this notation you could have written it that way right.

Let me write it for you. Sigma I have written it as a 1 1, a 1 2, a 1 s 1, a 2 1, a 2 2, a 2 s 2 and

so on right, the same thing I could have written here.

(Refer Slide Time: 05:43)

In this notation, only thing you have to remember is that this cycle structure means this group

element is a 1 1 will go to a 1 2, a 1 2 will go to a 1 3 right and then a 1 s 1 will go to a 1,

clear. And similarly a 2 1 will go to a 2 2, a 2 3 and this one will be.



Student: a 2 1.

a 2 1 and so on. So, this is the long hand off writing the permutation element in the symmetry

group whatever is the degree is dictated by s 1 plus s 2 you know so many elements, that will

be the degree of this permutation group. And, for that particular permutation which is written

in the cycle structure you can right along hand like this, clear. Similarly, I have another

element which I have written it in the long hand. I am not saying what is b 1 1, b 1 s 1 some

other elements, it does not need to be the cycle structure a 1 1 will go to one of those elements

from the set and I am just calling them to b 1 1 and so on.

We want to prove conjugation preserves the cycle structure that is the motivation. So, we

want to do pi inverse sigma pi; pi some arbitrary element permutation element in the same

symmetric group of degree which was there for sigma, ok. If you do pi inverse sigma pi on b

1 1, so let us take 1 of the element b 1 1, ok. 

So if you do pi inverse sigma pi on b 1 1 what does pi inverse do on b 1 1 if you look at it

here, it is a reverse operation; b 1 1 a specific element b 1 1 under an inverse of pi they will

go to a 1 1. Under sigma you know a 1 1 will go to a 1 2, again you do a pi, if you do a pi on a

1 2 it goes to b 1 2.

So, what have I essentially achieve is that the element b 1 1 under the conjugation operation

goes to b 1 2.

Student: (Refer Time: 08:41).

So, I am just taking one object in the object of degree n and I have defined what is the pi

operation, I have defined what is a sigma operation. So, one object which I am just looking at

it I am calling it as b 1 1. The pi operation pi inverse operation b 1 1 I know what it will do

that, that is what I am proved.



Student: (Refer Time: 09:06). 

No no, it is just a specific exam see I am not even giving us an example any arbitrary

permutation element will have some cycle structure. For example, let me take an s one cycle

structure s two cycle structure and so on.

Student: (Refer Time: 09:21).

Which cycle structure no, I am not done it I am not done it, I am doing it for a particular

element I am not finished the whole thing, ok. So, I have just shown that a specific element of

so many objects if you take and if you do this conjugation operation that specific element, you

can take any element; you could have taken b 2 1 or b 1 s 1, I do not care, ok. You can take

any element if you do the pi inverse sigma pi, you will show that the corresponding that set of

series of operation which I do will take you from for this particular example of b 1 1, it will

take you to b 1 2.

If you are taken b 1 2 it would have gone to b 1 3. So, what I am trying to show is that if you

go to b 2 1, if you go to b 2 1 it will not give you any of these sets, ok. So, this by induction if

you do this by induction you can call it a b c d e f g h you know, you can call any letters I do

not care, but what I am saying is that subset of s 1 letters under conjugation will only mix

only those subset of s 1 letters, yeah.

Student: Ma’am pi was (Refer Time: 10:53) operator.

It is an operator you can take I have n objects and I do pi inverse on that n object and then I

do a sigma on the modified n objects, that modified n is permutation of those n objects and

again a pi on it.

Student: I was saying that (Refer Time: 11:15) operate pi and (Refer Time: 11:17) sigma.



You can do that also, you can check it out also, do that also ok. So you can do whichever way

you want and I am just trying to say that if you started with a sigma with some specific cycle

structure a conjugation will not all to the cycle structure, that is all I am trying to motivate you

that. This is the steps even though, I have looked at a specific element in this order of pi

inverse sigma pi, you can see that the conjugation preserves the cycle structure. So, that is

why I said pi inverse sigma pi ultimately can be rewritten as s 1 cycle s 2 cycle up to s t.

(Refer Slide Time: 12:03)

So, the next thing which I wanted to show was the proof of the Cayley’s Theorem that was

also one of the problems which I had given you. So, take a finite group; take a finite group.

So, let us take a finite group we will always have an identity element let me call that as g 1

ok, and then let us take the order of this group to be n. Cayley Theorem says that any finite

group will be isomorphic to a sub group of symmetric group of degree a, ok. So, what we will



do is we will take these n elements to be the n objects in the permutation sorry, in the

symmetry group ok, and we defined a map. 

(Refer Slide Time: 13:01)

So, we are going to define a map pi, which takes G to let me call it as a permutation group,

which is a subgroup of symmetry group of degree n, ok. This is what do you want to show

that, and then we want to show that pi is an isomorphic map, if you can show this then you

have proved Cayley Theorem.

So, I have defined for you a pi subscript g by definition, is take the set of all the elements in

that group G to be the objects in the permutation group, which is getting permuted. If you

multiply g 1 with g you will get some element which belongs to the same set you all agreed

right that is the definition of the group. So, I am defining pi g to b g 1 times g, g 2 times g and



so on. Now, I will leave it to you to do pi g 1, pi g 2 or pi you know pi g, pi h and show that to

be pi g h these things I want you to check.

So, these are the properties to show that, this is a having a homomorphics map or in fact its

isomorphic map, right. And once I show this subset of elements subset of permutation in your

symmetric group of degree n will have all the group properties and it is going to be

isomorphic to your finite group of degree n sorry order n, ok. So, that is the Cayley Theorem

and this I gave it in one of your assignment to check and this is the way to prove it.

So, I have said show that pi g is isomorphic to g and hence g is a subgroup of the symmetric

group of degree n. This I have not shown it for you, but you can do it systematically right pi h

and then write the combinations and show that this property satisfied. What is the inverse

operation, it is well defined for a permutation elements.

(Refer Slide Time: 15:59)



So, the other question which I had asked, so, there was a typo this should not be s 4 it should

be symmetric group of degree 4, just correct it. So, every symmetry group for example, we are

taking a symmetric group of degree for 4, 4 objects. I have given two subgroups. 

One subgroup is where you take 1 2 cycle and the 3 4 cycle and you can write V involving it

should form a subgroup which means with just with 1 2 and 3 4 it would not be enough, right,

why? The set should be if you write the V as identity 1 2 3 4 is this a group sort of group

because it is inverse 1 2 square is identity it’s 3 4 squares is identity, but I should also allow

property where, I multiply arbitrary elements and it should be in the set, that would not

happen. So, you will have 1 2 3 4 anything else, this square is also identity.

So, this is definitely a subgroup of your symmetry group of degree 4 right, but is it an

invariance sub group if it invariance subgroup, what do we have to show? If you take 1 2

element and a g, and a g inverse what did you get has to be some elements from the set ok, I

am not even saying. So, let me called that element as some element H which is an element of

V for all g, which is an element of symmetry group of degree 4. This happens then you will

call V as a invariant called subgroup, ok. 

So, you have to check, but I am trying to tell you that if you do this you will find that this is

not same as this is not satisfied, ok. So, which means V is not an invariant subgroup is that

clear V is not an invariance subgroup.

So, you need to look at the other group which is given also do a similar exercise V N and you

can show that V N is normal while V is not. The same argument you have to do, but you will

be able to show for the other group for V N, it will be V N will be V N invariance. By the

way V N belongs to alternating group or no; V N has what elements 1 2 3 4, 1 3 2 4 and 1 4 2

3 this has what, it has two transpositions every element in this group has even number of

transposition. So, it will belong to the alternating group, clear. And you I leave it to you to

check that this one will be an invariance subgroup which means it will be equal to, ok.



So, given this fact I have asked one more question here. Realize, see if you remember the

definition of a semi direct product you will find a subgroup whose intersection with the

invariance subgroup is only identity element, right, that is the definition of a semi direct

product group. So, you find so, invariance subgroup was V N and you need to find a semi

direct product with some subgroup let me call it as H and that I want to write it as a symmetry

group of degree n or degree 4 in this particular example, right. 

Did you people to try it out anybody has some insight on what should be that subgroup

elements. What is the requirement, the elements of V N intersection elements of H has to be

only identity element that is the definition of a semi direct product, semi direct product is

given by this symbol, ok.

So, this is a symbol for semi direct product with this condition then you are asked to find a

subgroup H or another subgroup such that the semi direct product gives you all the elements

of that symmetry group of degree 4. How many elements are there? First check, 24 elements

which is 4 factor, here there are 4 elements; how many elements should be here, semi direct

product orders. What is the order of a semi direct product, if you take g 1 and g 2 if you do

direct product. What is the order multiplicate, what happens to the semi direct product, it will

also be multiplicate, what it is the change right that will also be a multiplicative.

So, which means this group should have order is equal to 6 that is the first thing, right and

then you figure it out what are the elements which you can write, ok. Other thing is it is a

symmetry group of degree 4, it has even permutations odd permutations, V N has only even

permutation. So, which forces you to have at least some elements which are odd permutations

such that one odd multiplied with even will give you other odd elements right. But, you

should also get other even elements which means you should have even elements also in the

group H whose intersection with the V N is null except identity nothing should be there, you

agree.

 (Refer Slide Time: 23:37)



So, these are the things we observe observations are H must have odd permutation elements

as well as other even permutations elements, ok. So, that is the first observation we can make.

So, using this let us start generating. So, let us write H to be identity let us write 1 2. If I take

the 1 2 with this 1 2, 1 2 squared is identity 3 4 is generated. So, I do not need to write 3 4, is

that clear. So, what I have to do is I have to generate things which are cannot be generated

from here, that is 2 3 under what else.

So, with this you have these 3 you also get various here from 3 4, 2 4, 2 3, ok. So, that is one

which you can kind of guess. I should also remember I should not exceed six I should also

make sure that this forms a group, right. So, forming a group means what, product of these

transpositions should also belong to the set, right 1 2, 1 3 will be product of two transposition

we will give you a 3 cycle right and completely you know it does like the symmetry group of

degree 3, 1 3 2.



By now all of you should be comfortable with the cycle structure notation or the notation. The

intersection of this with this is only identity element, I am not still shown whether it will

generate all the elements, but you can check in random can you get a four cycle out of this,

ok. So, I leave it to you to check if you want to get 1 2 3 4, you have to put pick one element

from here, pick one element from there such that the product will give you 1 2 3 4, ok.

So, just check in random and see whether you can also generate the, you have to get all the 24

elements. This is definitely a subgroup symmetry group of degree 3 is a subgroup of

symmetric group of degree 4 where you do not touch the 4th object, right. You do not need to

permute the 4th object, 4th object can just remain itself a new permute only the three objects,

but what I want to you to H check this at the semi direct product. We will give you all the 24

elements for this particular case and this is the way one should go about reasoning it.


