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So, I say that well let I have obtained an, I have obtained some sort of mean length n, right. I

can calculate how much time does it take for a microtubule or an actin sort of to reach this

mean length, ok. And how do I do that? That why just look at timescales of fluctuations. So,

for example, if I were to add a monomer and let us say a monomer has size a, right size a. So,

this I did not say.



(Refer Slide Time: 00:51)

So, for g actin typically has a size of around 4 nanometers and this tubulin heterodimer this

alpha beta tubulin that has a length of around 8 nanometers. So, that is the order we are

talking about. So, whenever you add a subunit you increase your length by a. So, this

probability of increasing my length by a, is my on rates, so k on, times whatever is the

monomer concentration C naught times delta t, right. The rate is k on; the probability is k on

times delta t into the C naught. And the probability of losing a filament and therefore,

shrinking your length by a is simply k off to delta t, ok.

And if you are doing this equilibrium model, at equilibrium I have that this C star or K D

whichever way I write it that is this k off by k on, right. If I put this k off by k on over here,

what that means is that at equilibrium P of plus a is equal to P of minus a, right which is why

basically you get that d P dt is equal to 0, on an average nothing grows or shrinks. But given



that I can now calculate, just like I did for the random walk I can calculate the first couple of

moments. 

(Refer Slide Time: 02:26)

So, I can calculate what is average x which is a times P of plus a then minus a P of minus a;

which is 0, in this equilibrium approximation because P of a is equal to P of minus a. And you

could also calculate what is x square, right. So, that will give me 2 a square k on C star delta t.

This is a square a of plus a plus a square P of minus a, ok.

And if I took, so this is for a single step, this is for a single step. If I took n such steps, so I

have a polymer of length n. Let me write small n, then that is nothing, but 2 na square k on C

star delta t, right. But this n if each step takes the time delta t, n delta t is nothing but the total

time that you have you have taken to sort of sample this n. So, this is like my 2 t, 2 a, let me

write 2a square k on C star or let me just write k off t, ok.



This the simple sort of random work that x square grows as t. So, it tells me what is typically a

time to sort of generate a microtubule or an actin of length L; that is 2 a squared k of L square

by 2 a square k off; that is my variance. And if I now put in these numbers that my k off I said

was 1 per second. My a was, how much? 4 nanometers let us say for actin and I choose a

filament that is around 1 micron. 

So, I if I use this typical numbers again, if I use these typical numbers that let us say my I am

looking at a filament which is roughly a micron in length with a subunit that is around 4

nanometers and with the off rate let us say which is 1 per second. I can calculate what time it

takes and that time if you put in these numbers comes out roughly around 9 hours, ok.

So, in order to generate sort of mean length of around 1 micron through this sort of a process,

through the sort of an equilibrium process it would take around 9 hours; which is simply too

long. If you think back to this microtubule dynamical instability plot they grew and shrink

shrunk in a matter of minutes. 

So, this was of the order of a few minutes, right. And similarly for actin, if you had to wait 9

hours to sort of generate length scales that process would simply not be biologically feasible,

so although this sort of an approximation generates the correct distribution which is an

exponential. It gets the timescales completely wrong.



(Refer Slide Time: 05:31)

So, the equilibrium model is not good enough to explain the timescales as it should not be in

fact, there is no reason to assume that this is in equilibrium. Yes.

Student: (Refer Time: 05:50). 

Yes.

Student: Sir, how can expectation that we (Refer Time: 05:55) expectation (Refer Time:

05:57)?

Was 1 upon alpha? Yes.



Student: (Refer Time: 06:05). 

Here I do something wrong? So, let us 1 upon 1 minus.

Student: (Refer Time: 06:19). 

So, in this in terms of these parameters. 

Student: (Refer Time: 06:26).

Let us just do it once. This is this part is fine, right. If the probability distribution is that then

this is e to the power of minus alpha n dn by e to the power of minus alpha and dn, right, 0 to

infinity, 0 to infinity. 



(Refer Slide Time: 06:50)

So, let me just do e to the power of minus alpha and dn, 0 to infinity. This is e to the power of

minus alpha n by minus alpha, 0 to infinity. So, this is what? 1 upon e to the power of minus

infinity is 0; minus e to the power is 1 minus plus 1 upon alpha. That is that and the top part is

integral n e to the power of minus alpha n dn 0 to infinity. So, I will do it by parts, first

function into integration of the second, 0 to infinity, minus integral of differentiation of the

first function into integration of the second. 

Tell me if I am making a mistake. So, this is this is 0, because infinity will give 0 here and 0

will give 0 there, so that I do not care. This is a plus 1 over alpha of this, and this I know is

anyway 1 over alpha. So, this is 1 over alpha square. So, then this is 1 over alpha square by 1

over alpha, so 1 over alpha.



Student: (Refer Time: 08:30) by getting the sum (Refer Time: 08:32).

You are saying the continuum approximation is itself making that, I check that. So, in principle

it is true that this is a discrete sum. On the other hand the n is so large that I do not assume

that a continuum approximation would make much of a difference. So, maybe one can show

that in certain limits that will come back to this 1 over alpha answers with that one can think

about. At least in the continuum approximation I think the 1 over alpha is correct, ok.

So, let me do a slightly more involved model that takes into account the fact that this

concentration of monomers itself is a variable quantity. Yes. The concentration of monomers,

right. Because P n plus P 1 will give you a P n plus 1, right.
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So, this on rate k on is some number per concentration units per time unit whereas, the off rate

is just per time; because you have to have a monomer coming in and meeting this for it to give

you the n plus 1. So, it is it has a constant per concentration unit itself. So, that is the

monomer concentration what are you talking about. Yeah, some monomer concentration

which I just took a C star.

(Refer Slide Time: 10:23)

So, we will just relax that. So, now, let me say that. So, like I said that often let us say for

microtubules you will find that there is this, microtubule organizing center from which the

microtubule start to nucleate. If you are doing this experiment in vitro then you will generally

have to wait until some of these monomers come together to form a sort of nucleus, a

nucleation sort of a n then it starts growing. 



So, generally if you were to do in vitro there is a lag phase, there is a lag phase where this sort

of nucleus forms. In vivo that is not the case because there is already this microtubule

organizing center from which it nucleates. After the lag phase there is a growth phase, where

this thing sort of elongates and then there is sort of a steady state where it does not change too

much in. 

So, let me say that I consider a system that has M nuclei from which these polymers will sort

of nucleate, ok. And let me say that the number of number of monomers in the filament is n of

t, so this is a function of time and, so this is number or this is the size of the polymer, the size

of polymer. And I have some concentration of monomers, some initial concentration of

monomers, some initial concentration of monomers which is C naught. Now, I no longer

assume that to be a constant, ok.
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So, now what should I do? So, let me say I want to write dn dt, right. How does that change?

So, there is a k on term, times the concentration, concentration of monomers at time t minus k

off term. Let me move all those things out of the way. So, this is essentially what I did even in

the equilibrium model, except there I have taken that this C naught is whatever the

concentration of monomers presumed to be fixed. 

Now, I say well as things polymerize of course, this is going to change, so that is some C

naught of t, right. So, how will that depend on this initial concentration? What should I write?

So, if I started off with some initial concentration C naught over here after time t how many

monomers have I used up? I have used up each polymer uses up n of t, right that is enough

that is the length of the filament. There are M nuclei, so there are M polymers that are

nucleating. 

So, there is M into n of t and this is a concentration unit, so whatever is my reaction chamber I

need to subtract the volume of that divided by the volume of that to get the concentration. So,

these many polymers remain at time t. If I started off with C naught after time t where I have

M filaments each of length n in a volume V, this is the number of monomers that remain to

you, and then of course this k off term, ok. 

So, now, I have an equation, now I have a differential equation dn dt, dn dt plus k on M by V

times n is equal to k on C naught minus k off this C naught now is the initial concentration, ok.

This is a first order differential equation, you can solve this whatever way we want, I will write

down the solution. You can write down in particular solution in a general solution. 



(Refer Slide Time: 14:28)

But you can solve this and you can write down what this n of t is going to be. So, this n of t is

going to be some constant e to the power of minus k on, k on M t by V plus plus V by M k on

and then k on C naught minus k off, right. So, again if you solve this first order differential

equation it should be able to show that the complete solution is that this is my n of t, ok. 

This is a constant which you need to sort of put in some initial condition. So, for example, if

you say that initially at time t equal to 0 this will be 0, then you can write evaluate your a and

then n of t just becomes V by M k on; k on C naught minus k off 1 minus e to the power of

minus k on M by V t, something. These are all constants this is the only time dependent, 1

minus e to the power of minus some beta t, ok.

So, basically if I were to look at how the length of the polymer would behave, in this case if I

were to plot L as a function of t versus t. And remember, if n is the number of monomers L is



nothing, but a into n of t, each monomer has length k. So, it is just a into this thing. And this is

1 minus e to the power of minus something like this, so that will just go and look something,

right. When t is very large, then you will go to this object whatever L star you want to call.

So, that is going to be your steady state length, L star is going to be this object V by M k on, k

on C naught minus k off. 

And this is indeed typically how lengths vary with time. If you neglect the sort of lag phase

because I am already starting with nuclei, if you did not start with nuclei you would have you

would have a lag phase where nothing was growing and the nuclei were assembly. But then

there is a growth phase, so this is called the growth phase and this is the steady, ok. You can

do a little better and just even ask that for example, what is this probability to have a filament

with n monomers and how does that change with time.
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So, you could ask what is the probability to have a filament with N monomersthat is simply the

number of filaments with n monomers, but N n, ok. And you could write down the relevant

reactions for this N monomer filament, which is that you can if you have N monomer filament

you can add a monomer to it to go to a n plus 1 or you could take a n minus 1 lengths filament

and add a monomer to it to go to P n, right. These are the only two reactions where this P n

will appear. So, you can write this d P n dt. And again let us say these are k ons and k offs. 

So, you can write this d P n dt, d P n dt again, which is plus k off P n plus 1 minus k on P n P

1 plus k on P n minus 1 P 1 minus k off P n, right. So, this term and this term represents the

flow out of the n length filament, this and this represents the flow into the n length filament.

And given this you can ask therefore, how does this average length change with time? How

does this average length change with time? What is L?

(Refer Slide Time: 19:35)



L is nothing but a times n of t, remember. So, average L is nothing but a times n into P of n,

right n equal to 1 to infinity. And then you can ask how does this change, d L dt is nothing,

but n equal to 1 to infinity an d P n dt and for d P n dt I know what the time evolution is, that

is this equation. So, I can substitute this and I can do this summation. There are lot to do this

summation. You can try to do it yourself or you can check the notes. If you do this summation

what you will get is, simply that this is a k k on P 1 the monomer concentration minus a k off,

ok.

So, this is basically what we had started off with, right. P 1 was this C naught minus M k on

by V. This P 1 is in principle also a function of time. If you say that this P 1 is a function of

time this that is the equation we started off with. So, if you plot your d L dt as a function of

concentration of monomers, so d L dt as a function of the concentration of monomers. Then

above this whatever C star which is k off by k on you will have a positive growth, below the C

star you will have a negative growth, ok, the C star is k off and k on. 

Student: (Refer Time: 21:36).

Yes. So, these are all done in a sort of deterministic, not determine, I am neglecting

fluctuations, right.



(Refer Slide Time: 21:55)

So, I am saying that yes I have taken M, but I say that each of them will have n monomers.

The way to think about this is that on an average each of them will have the same average n,

but plus of course there are fluctuations. So, in principle you should write stochastic

differential equations of this and see how important these fluctuations are. So, right now I am

not doing that.

Student: (Refer Time: 22:17).

This is the probability to have a filament of length a n at time t or probability to have more

correctly probability to have a, probability that the mean length of the filament will be a n at

time t. 



Student: (Refer Time: 22:50).

No, sorry say that once more. We got of expression for the length of the polymer, right. 

Student: (Refer Time: 23:04).

(Refer Slide Time: 23:11)

This one, yes. But then you have this n of t, you can have you have a distribution, right, it is 1

with the probability P 1, that the mean length of the polymer is 1 with some probability, it is 2

with some probability and so on. So, the average L is going to be whatever a n, P n and there I

use this d P n dt, this evolution equation that I already have, ok.



So, at least I have done a little bit now I can do will make it a little bit more complicated. And

say, so till now all my filaments that I have been considering are sort of non-polar filaments,

there is no differentiation between the plus n and the minus n. So, I can now relax that and say

that well. Let me consider a structurally polar filaments. 

(Refer Slide Time: 24:05)

So, let me draw my monomers like this, instead of drawing boxes let me draw a structural

asymmetry. So, that one end I will call the plus end, the other the one which looks this skull

the barbed end is the pointed end, so one is plus and one is minus. And what does it, is

effectively what that means is that what I will say is that I have an association rate which is

different at the two ends, so k off and k on plus and k on and k off minus, ok.



(Refer Slide Time: 24:51)

So, what it means is that if write down the rate equations. Let us say for n plus a monomer

that is being added on the plus end that is my k on plus times C naught the monomer

concentration minus k off plus and at the minus end dn minus dt is k on minus C naught minus

k off minus, right. So, basically what this is saying is that what is the rate at which the plus end

is growing or shrinking depending on k on and k off, this is the rate at which the minus end is

growing or shrinking, ok, dn plus and dn minus, ok.
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And now I can plot these as well. So, let us say again as a function of this monomer

concentration C naught; I want to plot dn plus dt and dn minus dt. Remember, this is basically

the if I did not have this plus minus this basically the model that we just did which grows if

your C naught is greater than C star it shrinks it C naught is less than C star.

What is C star? C star is this K D basically the dissociation constant, so k of plus by k on plus.

But in a case like this you can show that this also is necessarily equal to k off minus by k on

minus, ok. That these rates themselves can be different, but the ratios of these rates are

necessarily the same. Why is that? That is because let us say I have a monomer like this, right

and I add a monomer at the plus end, ok. So, I get something this structure. 

As opposed to I had this and I add a monomer at the minus end I get the same structure. Once

you have this mono structure, there is no way of saying which end you have added the



monomer to, right. It is indistinguishable whether we have added the monomer to this state or

this state. Therefore, the free energy difference between these two states delta G is basically

the same regardless of whether you add a monomer here or you add a monomer here. And

that free energy difference is just a function of this, so K D is basically like e to the power of

delta G by k B T, right. 

And if the free energy difference is the same regardless of which end you added the monomer

to, it means that this dissociation constant of the equilibrium constant must also be the same

for both these cases which means that this it is a very nice argument. It says that this

regardless of how different these rates are, in a model like this, the ratios of these rates must

necessarily be the same, ok. Another way to think about this.

Student: (Refer Time: 28:04).

Yes.

Student: (Refer Time: 28:08).

Why do you say at the minus end this will be greater than that? Realistically, that is what you

are imagining. So, then there is a point that this model then says that, let us say that the plus

end will grow something, sorry I should pass it through here the plus end will grow like this,

the minus end will grow like this. The slopes will be different, but they will intersect at the

same C star. 

So, when something is growing both ends will grow. If one end is shrinking the other end will

also necessarily shrink, which is not a realistic model for example, for treadmill, where one end

is growing and another in this shrinking. So, this is a nice argument which actually precisely

says what you are saying, that this sort of a model what I have written down cannot be the

correct model if I wanted to explain something like treadmilling, where the plus end is

growing and the minus end is shrinking, ok.



What do I need to do to do that? What I need to do is to then say that well what is being

added here is not what is being taken out here. What is being added here are, these g T P

subunits. So, I have a rate plus T. What is being taken out here are these GDP subunits. Once

I have this structural asymmetry this argument no longer holds; because now this delta G can

be different, ok. So, once I have these rates that here its being added, with this what is being

added is different from what is being taken off what you could have in principle if you were to

draw that phase diagram is something like this. 

(Refer Slide Time: 29:56)

Again if I plot, so let us say I will have something like this and something like, the two slopes

look very similar let me make the two slopes different. Let us here something like this. So, let

us say this is my dn plus dt this is my dn minus dt, ok. The slopes are different which is what in

the earlier case as well. But the C stars are also different, this is C star plus, this is C star



minus, right. So, you can have a concentration range a concentration of monomers where one

end is growing and another end is shrinking.

In fact, you can find exactly a concentration with the velocity of the plus n plus V is exactly

equal and opposite to the shrinkage velocity of the minus n; which is like the perfect tread

milling situation and you can work that out as well. So, the condition for tread milling if I

wanted to do like that, the condition for tread milling then is that dn plus dt is equal to minus

dn minus dt. So, the length of the polymer as a whole remains constant. The plus n grows with

some velocity, the minus n shrinks with exactly the opposite velocity. 

And then you can calculate at what concentration this will happen. So, if you work this out.

So, remember now my equations are these are being at what is being at the plus end are these

GTP or ATP subunits, if the minus ends of these GDP or ADP subunits.

Let us say ADP, since this is like treadmilling of actin, in which case you will get a treadmilling

concentration of something like k off plus plus k off minus by k on plus plus k on minus. So,

the k off plus is a D, now the k off plus is a T, this is a D, the plus is a T this is D, ok. 

So, we solve this dn plus equal to minus dn minus. You can solve for this C naught; which is

the concentration of monomers at which you will get perfect treadmilling and a model like this

will give you a treadmilling sort of a scenario. And in fact, you can see actually that if you plot

the lengths of the growing and the plus end and there is the minus end the curves do look

indeed something like this for real actins if you look at experimental curves. 


