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So, where would I come across something like this? So, a sort of example of an equation that

looks somewhat like this, where I have this separation of time scales is if you consider let us

say enzyme kinetics; if I consider enzyme kinetics.
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So, let us say I consider this set of equations that I have an enzyme plus a substrate which

reacts to give me a complex which I call this enzyme substrate complex. And then from there I

get this enzyme plus a product. So, what is essentially happening is the substrate is going to a

product; but through the action of this enzyme, which I recovered back at the end ok, the

enzyme does not get depleted.
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And again if I think of putting some rates, similarly rates k plus and k minus and rate r; then

this has the same sort of structure as this thing that we are talking about A going to B going to

C, ok. Where would I see this, so for example, if I had; let us say DNA. So, let us say I have

DNA plus this RNA polymerase; RNA polymerase, that reacts to form this complex; so this

RNA polymerase binds onto this DNA, DNA RNA polymerase complex. So, and then you get

back your RNA polymerase plus you get back your RNA plus you get production of RNA this

way. 

So, this is like the transcription way, equation transcription reaction written in this sort of a

language. And you can write indeed many sort of wherever you have an enzymes of the

kinetics, you can frame it in this sort of a language that you have some substrate whatever the

substarte is in this case DNA and something that transiently binds in order to facilitate the



reaction. For example: RNA polymerase at this and ultimately at the end of all of this will get

some product out of it and the enzyme sort of comes back.

But, once I write down an equation like this, once I write down written down a schematic like

this; I can again write down the rate equations exactly like I did for A and B, right. So, let me

I will not solve the whole thing, but let me at least write down the equations. So, if I write

down the equation for the enzyme, the enzyme d t, right. So, that has decays with the rate k

plus when an enzyme and a substrate comes together; it is formed back with a rate k minus

from this enzyme substrate complex and with a second rate r might as well just to write it just

k minus k minus plus r from this enzyme substrate complex that takes in compressive reaction

plus this reaction.

For the substrate I would have again a k minus k plus enzyme and a substrate and that is it,

right.
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Then for this enzyme substrate complex, d enzyme substrate d t it is produced at a rate k plus

from this enzyme and the substrate and it decays with the rate r, all right; r over there and

another k minus will here. So, k minus plus r enzymes substrate and finally, I have the product

d P d t which is simply produce. Anything else I am missing, the substrate has another term,

right. So, it is produced back with this minus k plus plus k minus substrate. So, that is my full

set of equations.

So, given a set, given a chemical reaction you should be able to write down the corresponding

rate equations. The solution of this is somewhat more complicated; but what I will do is that I

will make an approximation just to give you an idea. So, let me say that I make this

approximation; that I say that this again this sort of a Quasi-equilibrium.
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Now this enzyme substrate complex that is formed, that reaches some sort of an equilibrium,

so this sort of Quasi Steady State approximation that this enzyme substrate complex which is

some sort of a steady state. And what that immediately means is that I have the ratios of this

from this equation the ratio of this E into S by this enzyme substrate concentration that is

equal to k minus plus r by k plus. 

And this thing I call as K m, this thing is the name it is called this Michaelis mine Michaelis

constant. And again if I say that this rate r is much much less than k minus, then this K m is

simply like k minus by k plus, provided this r is small r small. So, then what I have over here

is, if I were interested in the rate at which product is forming is ultimately what I want to

calculate; how fast is this product form, then I can just write this product equation d P d t.
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D P d t the rate of formation of product was r times this enzyme substrate which in this Quasi

Steady State approximation is E into S by K m is r by K m enzyme type substrate. Let me

write the maximum of this, the maximum rate of this equation as some V max. So, let me call

V max is the maximum rate of this equation and let me say that this is r times E t o t.

So, I am looking at this d P d t, it is goes this r times the concentration of the this enzyme

substrate complex. So, if I say that all up with my enzyme whatever I had was bound to the

substrate and available for this reaction; then that would give me this maximum rate of this

reaction, so that is half times the concentration of this total enzyme that I have. So, this gives

me the maximum rate of this reaction. I will just write it in terms of this. So, I will write this d

P d t. So, I will write this d P d t.



I just want to cost it in some familiar form. So, V max is r is V max by E total r is V max by V

total by E total into r into r E times S sorry, E times S by K m. This is V max into enzyme

concentration substrate concentration by K m by the total enzyme concentration which is E

plus E S. So, this total enzyme concentration again I break it up into two parts; one is the free

enzyme concentration and the other is the enzyme substrate complex, the concentration of the

enzyme which is bound in the substrate. So, this E total I break it up into two parts and this E

S, I again right using this equation S is S plus K m. So, this is again E times S by K m, ok.
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So, effectively if I now cancel out this E S; what I get is that this product, the rate of

formation of product that goes as the rate of formation of this product d P d t goes as the

maximum possible rate into S by K m divided by 1 plus S by K m. This is a very famous

equation, this is called the Michaelis Menten equation or the Michaelis Menten Kinetics. 



And basically you can interpret this K m, this Michaelis constant as the concentration of the

substrate at which you get half maximal rate. So, if K m was equal to, if S is equal to K m;

then you get a half over here 1 by 1 plus 1 which will give you a V max by 2. So, a way of

interpreting this Michaelis constant is that it is the concentration of the substrate at which you

get half maximal rate of this product formation, ok.
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So, if you look at, so if you now solve this equation and if you look at what it gives; this is

basically the rate of formation of this product as a function of. So, this is the rate of formation

of this P is a function of time and wait this is the fraction converted. So, this is P by S. So, let

me first look at this, these are these various normalized concentrations. So, S divided by S

naught E S divided by E naught E by E naught and E by s naught. So, these are all scaled by

these concentrations of the initial times. 



So, this is what it looks like. If you look at this enzyme substrate complex which is where we

made this Quasi Steady State approximation it is sort of varies of course; but it varies that are

slow rate compared to these others, which is why we make this sort of a Quasi Steady State

approximation. So, this is valid not in this sort of regime this approximation that we have

made. And this d P d t grows something like this.

(Refer Slide Time: 14:06)

So, at the max, so this is scaled by this V max and if I look at this, so this is this d P d t again

as a function of this substrate. So, that is product as a function of time, this is actually d P d t

as a function of this substrate concentration. So, the maximum rate possible is V max which is

what I have. And at this half maximal rate, so wherever it becomes half that gives me the

appropriate value of K m. So, wherever it is 0.5 that gives me the appropriate value of K m,

ok. So, if V max is whatever around 0.16, then around 0.08 over here is where my K m would



be that line has not come. So, the corresponding value of K m for whatever this reaction is

some I do not know 0.01 milli Molar.

You could of course, solve this full set of equations explicitly, which is how one gets these

curves. I just wanted to cast this product formation equation, the rate at which you get the

product in this form; because this is often a form, this Michaelis Menten form is often

something that you see referred to in various equations that this rate of product formation

goes. So, this is again like this still function life of a behavior, it is S by 1 plus S with some pre

factor which is the maximum rate of formation of product, ok. 

I think I will stop here for today. What I will do is that I will use this language of rate

equations. So, this is sort of very generic, you can use it in biological systems; but also in any

sort of chemical equation chemical reaction that you were interested in. But what I will do is

that, I will use explicitly this sort of a framework to look at cytoskeleton polymerization of

microtubules and of actin starting from the next class.


