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It is one of the questions we had asked is that how do what strategies do small organisms like

bacteria developed for swimming and how are they different from large scale organisms like

fish or humans and so on. So, today we will try to sort of look at this question in a little bit

more detail. So, this was one of the first pieces of work was the seminal paper by Purcell life

at low Reynolds numbers, this is in the American Journal of Physics. It is actually a talk that he

gave in honor of Victor Weisskopf in 1956 and it was then published.



So, it reads like somebody is talking and it is very easy to read and it discusses a lot; so,

Purcell had a lot of insight or intuition into how this organisms would behave at these low

Reynolds numbers. So, I would encourage all of you to go back and read this paper its one of

the seminal works in the field, this and another light paper in 97 which came out in PNAs,

again by Purcell.

So, what he asked was this that ok, I want to look at strategies that organisms have evolved.

So, let me start by thinking of the simplest possible strategy that I can have the simplest

possible organism that I can have and so, what he picked up was this organism called the

scallop.
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You may or you know scallops have this nice meat inside which you eat, this one swims. So,

what is the scallop has is like two plates like this held together at the hinge and it sort of just



moves that hinge back and forth; so, it just moves that hinge back and forth like this. So, it

does that at different speeds. So, it opens it up slowly it takes the water comes inside and then

it quickly closes it as it closes it push the water gets pushed out, the scallops get pushed

forward, ok; so, that is how the scallop cells.

So, what Purcell asked was this that ok, this is a very simple model of how swimming can take

place. You have something like this two plates with an angle between them and then you

change this angle as a function of time, you open it and close it and as a result you get

swimming in the scallop. 

So, what he asks is that would this strategy be a successful strategy for swimming, if we are

talking about this microorganisms which live in the low Reynolds number. So, at high

Reynolds number at high Re this is a successful strategy as is evinced by a scallop this movie

does not does not playing, but whatever if it played you would see that the scallop does not

need swim.

On the other hand if you think about this at low Reynolds numbers; remember, what is at low

Reynolds numbers the inertial forces or the kinetic energy. In some sense is quickly dissipated

almost instantaneously dissipated by the viscous forces right, that is what we saw last day that

the Reynolds number is the inertial by the viscous force skills. And a very low Reynolds

number means that there is inertia does not play a role, the viscous forces quickly dissipate

whatever kinetic energy that you would have. What that means is that if you were to

reproduce this sort of a strategy at low Reynolds number when you are like this and water sort

of flows in, ok. 

Well, let me do this; the other way let us say you are open and you sort of close it, you expel

the water and as a result you move forward a little bit, ok. On the other hand when you open it

back up again, you draw back the same amount of water because it is in this highly viscous

low Reynolds number medium. You draw back the same amount of water that you are

expelled back which means it goes back precisely the same amount that it had moved forward,

ok.



So, what Purcell said was this this is called the Purcell scallop theorem that at low Reynolds

number whatever amount you move in one direction this given by this arrow, as you as you

reverse the motion you are going to move back in the opposite direction by the same amount.

So, there is not going to be any net displacement and what this. So, what this scallops theorem

says is that if you have any sort of reciprocal motion if you have any sort of reciprocal motion

which means that you trace back whatever trajectory you had taken, right. 

So, you open it up and precisely by the time reverse trajectory you close it back down in a low

Reynolds number world, a motion like that a reciprocal motion will not lead to any this net

displacement; so, it will not lead to any net displacement, ok.
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So, then next you ask that well this sort of a strategy will not work, this scallop strategy will

not work what do I need in order to have a minimum sort of what do I need at a minimum in



order to have a successful strategy for swimming in a world like this in a role when Reynolds

number world like this. 

And what he said what he came up with this is this fictitious sort of strategy which is called the

Purcell swimmer; which is called Purcell swimmer. So, what he said is this that if I have a

hinge like this if I have a single hinge then all I can do is some sort of reciprocal motion about

this hinge. On the other hand what I need to do is that I need to get back to my original

position. So, I am like this lets say I am swimming whatever strategy I used to swim, but

ultimately at the end of one swimming stroke I should come back to my original starting

position, right.

So, reside is that I need to come back to my original position. So, I need to complete a cycle

of these swimming strokes, but without going without retracing back my step and the

minimum thing that he came up with to achieve to achieve this object is what is called is this

Purcell simple swimmer. 



(Refer Slide Time: 06:35)

So, he said that well instead of one hinge, let me imagine an organism which has two arms two

arms pivoted on two hinges. So, here is my swimmer, this is the body of the swimmer and I

have two arms which can go up and down around these two hinges, ok. So, now, I can

imagine that I will complete a complete I will complete a cycle of swimming strokes without

going through a reciprocal motion and how do I do that. So, for example, here is my starting

position. 

Let us say so, when both arms are up then I put one arm down, I put the other arm down

right, I put the other arm down then I put this one up I put that one up, ok. So, at the end of

this cycle I have come back to this original position that I started back in, but I have not

retraced my trajectory. So, if I want if I this in terms of these angles theta 1 and theta 2 of

these two arms that it makes with this body axis. 



So, here I am at this stage 1 over there when say theta 1 is positive, theta 2 is negative and I

go around in a cycle. So, this is S 1, S 2, S 3, S 4, S 5, ok. So, I go around in this cycle and

ultimately I come back to S 5 which is nothing, but the same as S 1 ok. So, I have completed a

cycle, but I have not used any reverse motion. 

So, I have not reversed back my trajectory and its and what Purcell said was this that if you

use a strategy like this where you do not retrace your steps, then it is possible to get net

motion as a whole. In this in this sort of a world where you are obeying Stokes equation

where you have low Reynolds number physics ok. So, this is what is called Purcell simple

swimmer.

So, next you could ask that well this is nice, it is the thought experiment in that what is the

simpler swimming strategy that you can come up with, but what strategies have nature

evolved in order to swim in this sort of a world. And it turns out that one of the simplest

strategies that nature has evolved is to have some sort of a helical motion, and that is easy

most prominently seen in as we discussed the bacterial flagellum, right. 
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If you so, just to recap bacteria has these long flagella, it has multiple of these when it wants to

move in a given direction. All these flagella bunch up together and they rotate right when they

do not want to move these flagella sort of rotate in the opposite direction and they do their

own thing. So, this is the bunched up flagella when it rotates this e. coli or this bacterium is

going to move in a specific direction in the other case it is not going to move.

So, before it was known what the structure of this flagellum is and how it does what it does;

you could think of two options right, you could think that here is my here is my bacterium

attacks to this bacterium is a flagella which is say floppy, ok.
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So, it is floppy flagella and I move it I beat it such that I have a helical wave that travels down

this flagella length right, that it could be one option or you could have instead of something

like this you could have a flagella that was itself helical and you could rotate this helix, right.

You could rotate this helix in order to generate motion and people were not sure which of

these were. In fact, people thought that the first scenario was the more likely one because it

was thought somewhat inconceivable that you would have this helical structure and then

something in the cell would sort of rotate this helical structure and so. So, you would need

some sort of a rotary motor which would continuously rotate this flagellum in order to

generate this helical waves.

It turns out that is the second option is in fact, the true one and this was shown this was first

posited by bird, I do not remember when in the 1980s and so on. And, then later on confirmed



by experiments that indeed there is a rotary motor inside the bacterium and this flagella is

actually is actually like a helix, the flagella is like a helix and this helix actually rotates in order

to generate this motion.

(Refer Slide Time: 10:55)

This is the sort of animation of that you have these helixes which are rotating synchronously

and that generates motion. So, here for example, is a trajectory of multiple e. colis which are

doing this business. So, you will see they are moving and at some point maybe some will stops

over there that one stopped which was when all these flagella became unknotted and they

were each doing their own thing. It will do long runs and then occasionally it will stop all this

flagella will disengage and will stay there for a bit, ok.
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So, if you look at the trajectories, it looks something like this. So, if you look at this

trajectories it will look something like this we will do a long run, then maybe it will stay at

some place it will do a what is called a tumble and then again a run and again a tumble and so

on. So, this bacterial motion is called this run and tumble motion right, it is called this run and

tumble motion; run and tumble motion. So, it runs for some time the flagella beats

synchronously and then it stops then again it starts running.

So, what Purcell said is this, that in order to take this sort of a helical flagella and then work

out the full hydrodynamic solutions is sort of difficult. So, let me see if I can do something

simple and that is that is the argument that I will try to show you today, it is a very nice its

very powerful and very beautiful argument.
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So, what he said is this that, ok; so, before I do that I just wanted to show you this flagellar

motor. So, this is a flagellum, but so, if you look if you go deep inside and looked at this

flagellar it is attached to the cell body through this motor through this bacterial flagellar motor

over here. So, there is a filament, this is a hook and through this hook, it is attached to this

motor.
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And this motor actually consumes energy in the form of ATP and it continuously rotates in

order to rotate the flagellar, ok. So, it is one of the it is sort of the thing that people see and

think about whether evolution can truly have built something, but it indeed has it is a beautiful

piece of machinery, it takes this flagella it rotates it and that causes this meeting. 

We look at this motor in a little bit more detail when we when you look at molecular motors

later on in the course. But I, but the truth is this that there is this helical flagella and there is a

motor inside this body, this motor sort of rotates in order to rotate that flagella and then that

causes motion, ok.
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So, here is the argument that if I have a helix and I wrote it; so, what I considered now is a

non deformable scaling. So, it cannot would fluctuate its shape and so on, that is not strictly

true, but let us assume that. So, it can do only two things it can rotate and it can translate, ok.

So, there is the two things that this this idealized helix can do, it can rotate and it can translate.
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Now, if you if you think if you imagine that this sort of an idealized helix and if you rotated

this helix, it would necessarily cause some translation, right. If you took a cord screw and you

sort of rotated it that would cause some translational motion. On conversely, if you took a

course when you translated it that would cause some rotational motion as well and the way to

see it in the language of these drag forces and so on, is to see that so, if you think; so, we

know what is the drag force for a spherical body which is 6 pi eta Rv, right. 



(Refer Slide Time: 14:49)

This is a spherically symmetric body on the other hand if I took a non-symmetric body

something like this, then I would have a drag coefficient which is different in this direction as

opposed to this direction, right. So, if you were moving in in this way you would face some

drag viscous back if we were moving like this through a fluid it face a different viscous drag,

right. 

So, the idea is this that if you think about this helical coil, let us say it is it is moving. So, it has

some velocity like that you decompose that velocity into a component which is parallel to this

flagella and one which is perpendicular to this flagella, right. Each of these will cause a viscous

drag right, F is going to be proportional to the velocity, but this the viscous drags will be

different because the drag coefficients are different in these two directions along the axis

perpendicular to the axis and along the axis. Because, these will be different, you will have a



net force you will have a net drag force which is not going to be in the same direction as the

velocity that you moved in right,.

And then, if you add up these drag forces from these different segments. So, for example, here

are the two sort of whatever this way and that way, I forget the word two pairs in this

segment then you will see that the drag you will have a net force which is going to act along

the axis of this helix, ok. So, this F 1 and this F 1 prime will sort of cancel this F 2 and this F 2

prime will add up they will point in the same direction and therefore, if you have a sort of

rotation that is going to give rise to this sort of this is going to give rise to an sort of force

which is going to make this helix move along the axis of the helix, right.

So, this is sort of intuitively obvious, if you rotate a box through its going to move and so on,

but you can also think of it in terms of these drag forces. And so, basically whenever you have

a helix that translates under an external force it will necessarily rotate, conversely a real except

rotates under an external torque will necessarily translate. So, this was Purcell starting point,

all right.
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So, here is my here is my flagellum here is my cartoon of the flagellum I can apply a force on

it, I can apply F, I can apply a torque on it and as a result it can move translationally with the

velocity v, it can rotate with a angular velocity omega, ok. Now, Purcell’s cells that well let

me try to relate this force and this torque to this angular velocity and this linear velocity. So, I

have these two points, v is the force F and the torque N, right. 


