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Alright, now let us come to this problem that I want to discuss today which is the Cell

Signaling Problem. So, if I just to remind you so, we discussed this sort of from last class this

week. So, here was this problem that I have some sort of a chemical which the cell is going to

sense and it is trying if it is an attractant it is going to try and move towards that chemical.
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If it is a repellent, it is going to try to move away from that chemical and so on.



(Refer Slide Time: 01:00)

So, we saw this H pylori movies which had we had this H pylori movies when we saw it

moving either towards urea or away from HCl and so on. 
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So, this was the picture that I have this cell. The cell has certain chemo receptors on it is

surface which are proteins which can detect and recognize the chemical. What I want to know

is that if I have some chemical source far away at what rate is the cell going to detect these

chemicals with the help of these chemo receptors, ok. So, that is that is the basic problem that

I will try to answer. 

So, let me write down the proper question. So, what I want to ask is that what is the rate what

is the rate of rate at which signaling molecules which are like your urea or the HCl in the case

of pylori make their way to the surface, make their way to the surface of the cell ok. Or in

other words, let me say I want to calculate something which is like this rate so, dn dt.

So, the number of signaling molecules coming to the surface of the cell per unit time, that is

what I want to ask at this as far as the cell signaling growth of course, ok. So, we will make a



number of assumptions and I will see. So, your cell could be whatever arbitrary complicated

shape, right; for example, E coli is like this sphero cylinder we saw, if you take an animal cell

that is soft; so, it can take variety of shapes. But, what we have solved this for is this model

cell which is a spherical cell spherical cell ok, spherical cell yes ok.

So, let me write down my assumptions. So, I assume if the cell is a perfect sphere. The first

step to doing a physics modeling of anything is that assume it to be a perfect sphere, but it is

not a very hard constraint to relax. Of course, if you take arbitrary shapes writing down

analytic solutions becomes difficult, but you can always solve it numerically following the

same technique. 

If you have some other shape for example, well defined shape with some symmetry for

example, a cylindrical cell or something like that then you can again do it analytically, the

mass will just become a little more complicated. So, I will do it for the simplest case which is

a perfect sphere and let me say it is a perfect sphere of some radius of some radius. So, that is

my model of the cell; let us say it has some M number of receptors, M number of receptors on

it is surface which are distributed homogeneously uniformly on the surface of the cell. 

So, often we will see you will see that for example, even in this cartoon of the E coli, the

chemo receptors are clustered at the ends of the cell, ok. As far as this calculation goes I will

not take anything like that into account, I will say that the receptors are sort of spread

uniformly over the surface and there are M of them. So, because it is a perfect sphere and the

receptors are spread uniformly on the surface. 

Let me make another assumption that the problem is spherical. So, the concentration is

spherically symmetrical spherically symmetric. So, the concentration of signaling molecules

is spherically symmetric, which means that if I write this concentration. In general, it is a

function of the vector r right, it might depend on which direction you are looking at and so on

But, I will just say that if I make the spherical symmetric approximation is just a mag distance

away from the cell that is the only thing that matters, ok.



And I will assume that you have a source of signaling molecules somewhere which was your

pipit in these pylori experiments far away from the cell. So, I will assume a far field

concentration, I will assume a far field concentration which is c. So, as r tends to infinity, I

will say that my concentration goes to c naught, ok.
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So, this is then my thing that I have a cell over here of radius a, far away from that at infinity.

I maintain a concentration of c naught using some apparatus that I have and if everything is

spherically symmetric look what I want to solve for is the concentration profile in all of this

space in between, ok. So, I want to solve for the concentration profile and because I have

made the assumption that spherically symmetric, it only depends on the scalar r not the vector

r, ok.



And this; so, these signaling molecules are being maintained at a constant concentration here,

they are going to diffuse, right; they are going to perform a random walk through this space

until they hit the surface of the cell. At the surface of the cell, you have these receptors which

are going to absorb the signaling molecule and then respond to that by moving in some

particular direction, ok.
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So, the setup is clear. So, because they are diffusing, I will solve the diffusion equation for the

concentration of signaling molecules del c del t is equal to D Laplacian of c, ok. So, here is

my diffusion equation that I will solve. So, let me say that I want to solve it in the steady

state, ok. So, when everything has come to nothing is changing with time anymore which

means that I will take del c del t is equal to 0 which means the equation that I am looking to

solve therefore, is D Laplacian of c is equal to 0, all right.



So, in what coordinate system should I be solving this you can of course, solve it in any

coordinate system, but the most appropriate choice given that this problem that I have

defined. I have a spherical cell and then there is a spherical symmetry is that I will solve it in

the spherical coordinate system, ok. So, I write down the Laplacian the spherical coordinate

system. So, what I have is D into 1 by r square del del r of r square del c del r is equal to 0 is

really the Laplacian in the spherical coordinates. So, this is what I am looking to solve. 

So, if I solve this what this means is that r square del c del r is some constant independent of

r. Because, del del r of that quantity is 0 which means that I can write down my I can write

down my concentration profile as a function of the scalar distance r as sum A by r plus B,

right. So, if you solve this differential equation properly, the solution comes out to be c of r is

equal to A by r plus B, there is a looking for the minus sign over here, ok. In order to

determine the constants A and B, what I need to do is that I need to specify the boundary

conditions of the problem. 

Now, one boundary condition I have already talked about which is at the power field

concentration is c naught that c as r goes to infinity is equal to c naught. So, that will fix one

of the constants for me, but I need one more one more boundary condition. So, and that

boundary condition will most naturally occur at the surface of the cell itself, the surface of the

sphere. 

So, what I will do over here is I will make an assumption. I will make an assumption that

these cells are these receptors are sort of perfect receptors which means that whatever sort of

signaling molecule comes to these receptors gets absorbed instantaneously and completely.
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Which means that what the other boundary condition that I will choose is that c at r at r is

equal to a the surface of the cell is equal to 0, ok. So, this is an assumption it is called the

perfect receptor assumption perfect receptor assumption and basically it means what I said

that once you anything that comes to the surface of the cell gets absorbed, ok. So, which

means which is why that the concentration drops to 0. We will relax this in a few minutes and

we will see what happens when we relax this constraint, but for the time being let me make

this simple assumption that these cells are these receptors are perfect receptors, ok. 

So, now let me I have these two boundary conditions, let me now put them in this solution

and see what I get for A and B. So, if I put that c at r is going to infinity is c naught then what;

that means, is that when r goes to infinity this term will drop out. And therefore, what I will

get is that B is equal to c naught, if I put this condition that c at r equal to a is 0. What that



means is 0 is equal to minus A by r plus c naught which means that A is equal to rc naught,

right. 

So, sorry I made a mistake this is at r equal to A; so, this is A. So, this is capital A is equal to

this small a times c naught, ok. So, what I have if I substitute back this A and B into that

equation is a concentration is a solution for the concentration at any r and that turns out to be

c naught which is common 1 minus a by r, right. 

So, it satisfies the two boundary conditions that r goes to infinity this comes back to c naught

when r goes to a, this c goes to 0, ok. So, it satisfied my boundary conditions. So, this is how

my concentration profile will look like given that I make this assumption of perfect a

absorbance, ok. So, now, from here I could ask that well now that I know the concentration

profile, I can ask that how many particles makes it to the surface of the cell per unit time and

to do that you can calculate first the flux.

The flux j of r at r equal to a; the flux at the surface of the sphere the incoming flux.

Remember, the flux is nothing, but the number of particles per unit area per unit time so, that

from Fick’s law is given by minus D del c del r at r equal to a, all right. So, if I take del c del r

then I will get; so, let me see minus D into del c del r will give me 1 over r squared. So, c

naught by a by a square because I am calculating at r equal to a; so, this is my incoming flux,

the negative sign simply says that your particles that are coming into the surface and getting

absorbed.
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So, this is my incoming flux and from there if I want to calculate the number per unit time,

the number of particles per unit time remember the flux is the number of particles per unit

area per unit times. So, if I want the number of particles that comes into the surface per unit

time dn by dt that is nothing, but the flux at the surface times the area of the surface itself. 

So, if I do D c naught a into 4 pi a square so, what I get is nothing, but 4 into pi into D into c

naught into a, all right yes, all right. So, this is the number of paths in the case where I have

the same diffusion going on and I have these perfect receptors, there is a number of particles

per unit time that comes into the comes to the surface per unit time.

So, the dn dt is nothing, but what I did is minus j at r equal to a into the area of the surface,

itself; so, which is this 4 pi D c naught a. So, this is very important limit it is called the

diffusive limit, it is called the diffusive limit. And, what it says is that you if you have sort of



a chemicals which are diffusing and then getting absorbed at some surface like this r equal to

the spherical surface at r equal to a. And if this process is happening simply by diffusion, then

this is the maximum number of particles that you can absorb per unit time at this surface, ok.

So, it provides a limiting case and it is called the diffusive limit. So, as we go along in the

course you will see that this we will use this diffusive limit sort of again and again. You

might say that you know we are we have done this sort of more simplistic case which is that I

have this perfect sphere and so on and most organisms will not be perfect spheres which is

true.

But what; that means, is that what will happen is that this pre factor that I have this 4 pi that

will sort of change, but roughly it will be of this order. You will have some correction terms

maybe which are of order one depending on what geometry of the cell that you choose, but

roughly this is going to be your limit the fastest that you can absorb particles providing these

particles are simply diffusing, ok. 

If you have other active processes which are being driven and so on then of course, you can

go faster than this, but if you are relying purely on diffusion for the signaling molecules to

reach your surface of the cell, this is the maximum speed that you can achieve. So, let me

now just relax this constraint of this perfect absorbance. So, let me say imperfect absorbance. 
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So, it is good to have, it is good to have a clear idea of what assumptions you are making

whenever you are trying to model. So, if you can if you want you can systematically relax

them 1 by 1 in order to go closer and closer to an experiment real experimental situation, ok.

So, it will not relax the others for now it is the spherical and so on, but at least I will relax this

perfectly absorber approximation; so, imperfect absorbers I say, ok.

So, I will say that these receptors have some finite rate of absorption, there are some finite

rate of absorption of signaling molecules which is let us say k on, ok. So, it will absorb these

signaling molecules with some rate which is characteristic of the receptors which I will call as

k on, ok.

And remember, there are M absorbers which means that the number of molecules per unit

time that gets absorbed at the surface of the cell is going to be M. If you have M absorbers,



each absorber is going to absorb with a rate which is k on and the concentration at the surface

of the cell, ok.

So, if you have some concentration at the surface of the cell these molecules will get absorbed

at some rate in x given absorber and you have M of those absorbers, ok; so, that is my rate of

absorption I need to calculate this. Of course, k on and M are some parameters which I say

whatever the cell has some number of receptors it has some rate of intake and I need to solve

for what is the c of a, ok.

So, now unlike in the perfect receptor case, this boundary condition no longer hold this a right

at r equal to a, this is no longer equal to c right because not if these are not perfect absorbers.

So, some molecules will stay there at the surface of the cell, ok.
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So, in a situation like this how would I define my steady state intuitively before we write it

down mathematically, I can say that I will reach I will reach steady state when the rate; so,

here is myself when the rate at which these diffusing molecules reach the surface of the cell is

exactly the equal to the rate at which these molecules get absorbed into the cell, then I will

reach steady state right make sense.

So, the rate at which this get absorbed is this we have written M k on c of a; so, we have

written M k on c of a, right. The rate at which it reaches the surface of the cell is the diffusive

flux times the area, right. So, minus j of r into 4 pi r square, right or so, if I write in terms of

concentration j it is minus del c del r. So, D del c del r 4 pi r square, good. So, now, I can

solve this, I now have an equation for c the differential equation for c D del c del r into 4 pi r

square is equal to M k on into c of a.

So, I can integrate this; let us see I can integrate this between a to r some arbitrary r. So, dc

from c of a to c of r and then on the other side I have integral M k on c of a by 4 pi D D r by r

square from again from a to r right, I have just rewritten. So, dc is on one side, all the r terms

on the other side. So, D r by r square and then hopefully these are M k on ca by 4 pi D r

square, ok.

So, now, I can do this integration. So, this over here gives me c of r minus c of a this gives me

minus 1 over r; so, M k on c of a by 4 pi D minus so, let me just do the lower limit first minus

M k on c of a by 4 pi D r, here right. I do this D r integration between a to r, if you take the

signs correctly and these are all constant M k on c a 4 pi D, all right ok.

I can now apply the other boundary condition; remember, the other boundary condition is still

valid let us c at r going to infinity is c naught. So, if I put r is infinity in this equation c of

infinity is c naught. So, c naught minus c of a, c naught minus c of a this term will vanish if I

put r equal to infinity right 1 by infinity will be 0. So, I will I will be left with is this term M k

on c of a by 4 pi D a.



So, in this everything is known except for this c of a; so, I can find out the concentration on

the surface of this sphere now. So, I can solve for c of a that is going to be c naught by 1 plus

M k on by 4 pi D a. So, this is the concentration at the surface of the cell many have imperfect

receptors which are in up taking the signaling molecules with that way. 

You can check that whether this makes sense if this receptors were very good. So, if it sort of

absorbed everything that came into it which means that this k on was very high, right.
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So, let me try a few limiting cases; so, high k on. So, let me formally let me write M k on by 4

pi D a this object over here is much much greater than 1, if I take this limit. So, it is almost

infinitely large if k on is like infinity then what will the c of a go to what will this equation

reduce to 0 right which is my perfect absorber. If my k on was so large that everything gotten



absorbed, I should get back whatever I had for the boundary condition which is c of a equal to

0; so, that is good.

On the other hand if these were very poor absorbers nothing got absorbed. So, very low k on,

right or equivalently this object M k on by 4 pi D a was much much smaller than 1, then what

should I expect what should this c of a equal to?

Student: c 0.

c 0 right; so, nothing gets absorbed. So, just stay as whatever the concentration at infinity

was, right. So, then c of a goes to, c naught so, if this was very small then I can neglect this

with respect to 1; so, it goes back to c naught. So, the limits work out very nice they work out

nicely as it should, if you have very good if you have perfect absorbers your c of a goes to 0 if

you have hopeless absorbers your c of a just stays at the background concentration nothing

gets absorbed ok. So, now, that you know this c of a which is the concentration of, yes.

Student: Cell does not had to be absorbed (Refer Time: 24:22).

Why not?

Student: See the pylori absorbed in.

Student: Cell is at absorbing nuclear (Refer Time: 24:32).

It can so, it up it this you have the surface of the cell right where you have this receptor and

the signaling molecule comes. It can bind to this receptor and cause a cascade of changes

which causes the cell 2 so, but this thing is no longer free in solution, ok. So, the signaling

molecule is no longer free in solution it causes the chemical reaction they are getting

absorbed with the receptor. It can even get internalized in some cases where you can get

(Refer Time: 25:05) ok. What was I saying?



Student: (Refer Time: 25:14).

Right; so, now, I know this c of a which is the concentration of signaling molecules at the

surface of the cell.

(Refer Slide Time: 25:22)

I can just substitute that here to find out what is this new dn dt, I know what was it in the case

of the perfect absorbance. So, for this case it is then just M k on M k on c naught by 1 plus M

k on by 4 pi D a, right. So, for the case of imperfect receptors, this is the rate at which

signaling molecules get absorbed by the cell by the surface of the cell, ok. The better the

better the receptor so, the higher k on the better this dn dt higher the number of receptors that

you have higher M higher this dn dt and so on, ok.



Remember that this rate that we have calculated this dn dt that is going to be limited by this

diffusion diffusive limit right, this is the best that you can achieve because it is the case of

perfect receptors. So, this dn dt is definitely less than this.
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So, what we can ask is that well, if the cell sort of keeps on increasing the number of

receptors that I that it has on it is surface, how efficient is that how better does it do. So, to do

that what we will ask one question which is let us say how many receptors would the cell

mean; so, I will ask how many receptors would it need would it need to achieve a half the

diffusive length. So, here is the maximum speed the maximum rate at which it can take. 

So, they say that well as long as I am in the order of magnitude is the same, I have done

reasonably well right, let me say that how many receptors. So, what would be the number of

receptors that I need to achieve half this rate? Ok; so, that is the question that it was. So,



basically the dn dt that I am looking for the dn dt that I am looking for is half of this

maximum rate. So, 4 pi D c a naught by 2 and I want to find the number of receptors M that

will give me this rate. 

So, M k on c naught by 1 plus M k on 4 pi D a. Question is here ok; so, this question is here I

have the imperfect receptors with a certain rate at which it absorbs the molecules which is k

on. I ask how many of these imperfect receptors would I need on the surface of the cell to

achieve this specific speed which is half of the maximum speed I could achieve, ok.

So, this is this you can solve. So, 4 pi D c a naught by 2 plus 4 pi D a; so, M k on c this I have

put the this c naught and that it a M k on’s c naught by 2 is equal to the right hand side is this

M k on c naught, right. I want to solve for M; so, the solution for M is then this is what M is.

What is M, 4 pi D by k on 4 pi D a by k r, right. 

So, this is the number this is the number of receptors that I would need provided the receptor

has a rate k on at which it takes the cell has a size a the molecules of this diffusion coefficient

D. This is the number of receptors that I would need in order to achieve half the diffusive

limit, ok. This by itself of course, does not tell you much what is 4 pi da by k on. So, what we

will do is that we will put in some typical numbers now and see how many receptors does it

translate to, ok.

So, let me see; so, let us say a typical you carry eukaryotic cell. So, let me stake a as some 10

microns, right. So, my cell is a sphere of 10 microns which is roughly a cell size as we

discussed let me take a typical diffusion constant. Which is again roughly let me say 100

micron square per second I will need a k on for which I use again. So, these are all order of

magnitudes roughly in the same correct order of magnitude. 

So, 10 per micro molar per second and at some point maybe I will also need the size of

receptor; so, let me just call that something all right now. So, a typical; so, receptor is a

protein molecule right. So, typically let me say size of receptor let me call that something S r

a sum 10 nano meters. So, these are just order of magnitude estimates. 



So, typically eukaryotic cell, typical diffusion constant, typical uptake rate and some typical

size you can substitute this back here and find out how many receptors that does that translate

to; so, but before we do that. So, for at least; so, this is the cell of 10 micron size right. How

many receptors would you expect on the surface of this cell? Order of magnitude ten,

hundred, thousand, million, billion from our estimates of protein numbers and so on in the

first class, this is just the case I mean this is. Anyone?

Student: 10 to the power of 4.

10 to the power of 4, good we will start off with that and see ok; so, now, who is going to put

in these numbers and tell me. Remember, we should put take everything in the right units; so,

what is 1 molar, 1 molar remember is Avogadro’s number. So, the six point, let me just say 6

6 into 10 to the power of 23 molecules per liter, 1 liter is, what is 1 liter in micron cubed, this

1000 cc. 

So, therefore, someone 6 into 10 to the power of 23 by how many microns cubed? 

Student: (Refer Time: 32:50).

10 to the power of 15, good; so, 10 to the power of 15 per micron cubed and I am talking in

terms of micro molar. So, 1 micro molar is this into 10 to the power of minus 6. So, that is 17,

15; so, 600 per micron cubed right, that is 1 micro molar. So, this is 600 per micron cubed, ok
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So, k on if I translate this let me do here that is getting too crowded. So, k on if I translate that

k on is 10 per micrometer micro molar. So, 10 by 600 into micron cubed per second right, tell

me if I am wrong tell me if I am making mistake anyways; so, that is the only conversion ok.

So, then I can calculate what is the number of receptors. So, this is 4 pi into 100 micron

square per second this diffusion into the size which is 10 microns divided by k on which is 10

by 600.

So, 600 by 10 second per micron cubed, right; the units work out micron cubed on top micron

cubed on bottom second. So, this gives me a pure number which is as it should, there is the

number of receptors I am calculating. So, this is 4 pi into 6 into 10 to the power of 4, where is

4 pi roughly 12; 12 6, 72. Let me just say 72, 75 into 10 to the power of 4 so, 7.5 into 10 to

the power of 5 receptors. 



So, the number of receptors that you would need to achieve half of this maximum speed

maximum diffusive speed is of the order of 10 to the power of 5 receptors on the surface of

this 10 micron cell. Is that a large number or is that a small number? 

Student: (Refer Time: 35:27).

Student: (Refer Time: 35:28) large.

So, how would I say that, what is it large in comparison to.

Student: (Refer Time: 35:34) large.

Yes of course, it is a large number, but a.

Student: (Refer Time: 35:39).

Let me say that I have it set right on which I have placed this 10 to the power of 5 receptors,

right; each of them occupy some area, ok. I could ask that given I have these many receptors

10 to the power of 5 which is a very large number; what fraction of the membrane is covered

by these receptors, ok; so, what fraction of the membrane is free for other proteins. 

If this is taking up all my membrane area then that is pretty bad that is pretty large right, I do

not have anything left for any other proteins to do it is job. So, that is one thing I calculate,

another thing I can calculate is that well maybe what is the separation between given I have

10 to the power of 5 proteins. What is the typical separation between 2 proteins and how does

that compare to the size of the protein itself, right.

If it is of the order of the if it is the same as the size of the protein which means, I would need

this protein sitting next to each other in order to accommodate these many things. There is a



some measures that yes 10 to the power of 5 is large, but does it really fill up the cell. So, that

again we can do 

So, let us say let me do the area calculation, I have these many receptors. So, I want to let us

say I want to find this covered membrane fraction, covered membrane fraction which is how

much area is taken up by these proteins divided by the total area of this 10 micron cell. So,

the covered membrane fraction is something 7.5 into 10 to the power of 5 into the area of the

protein each individual protein, I will assume as 10 nano meter square. 

So, 10 nano meter square and on the denominator is the surface area of the cell which is 4 pi r

square; so, that is 100 micron square. So, what is that, it might help instead of writing 75, I

had some 4 pi into 4 pi into 6 into 10 to the power of 4, then I can cancel off the 4 pi basically

and nanometer square I need to convert to micron squared. 

So, this will be 10 to the power of minus 5 micron square; so, good. So, how much is that. So,

4 pi 4 pi cancels off, 100 this becomes 100. So, roughly of the order of 10 to the power of

minus 3 right, 10 to the power of 2 into 10 to the power of minus 5; so, roughly of the order

of 10 to the power of minus 3. So, the fraction of the true I have 10 to the power of 5 protein

molecules, but the fraction of the area that it covers out of the total area that is available to the

cell, it is like something like 0.001, ok.
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So, it is still pretty sparse and even so, it is a lot of proteins, but it is still pretty sparsely

distributed on the cell, but even with this parse distribution, I have achieved half of my

maximal speed. So, you can say that well instead of 10 to the power of 5, I will put in to the

power of 6; it does not give you an order of magnitude estimate. Maybe you are at 50 percent

it takes you to 60 percent, it is not really worth it for the cell; cell is already doing pretty well

even with this sort of sparse distribution. 

So, actually if you look at you can also calculate the mean separation given these many it

comes to around 80 nanometers roughly between 2 proteins and a typical protein is square

root of this; so, it is 3 nanometers size wise, ok. So, 3 nanometer protein separated an interest

proteins separation of around 80 nanometers; so, it is by all measures on the surface of the

cell it is pretty sparsely distributed.
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So, if you look at the effect of receptor density. So, this is some particular bacteria which I do

not remember, this molecule that is getting absorbed with the virus coli phage lambda and

this is the receptor density on the surface of the bacterium ok. So, when you receptor density

is small as we increase the density of course, you get a lot of improvement in the absorption. 

But beyond a certain point it sort of flattens out there if you put more and more receptors in

the surface of the cell, it does not really make that much of a difference through the

absorption performance of the cell itself. So, that is one lesson the cell does pretty well even

with a relatively low coverage of receptors as far as this diffusion limit goes and then like I

said of course, this majorly simplified with various approximations one can do better.
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For example: if you look at the distribution of chemo receptors on the surface of the e coli

you will see that there are large clusters at these two ends and very few chemo receptors over

here. So, if you were to model the E coli as a sphero cylinder, then you could take that there is

nothing on these cylindrical walls, but there is a large density on this hemisphere and on this

hemisphere, and then ask that you know what sort of how does that change the calculation,

ok.

So, realistic to model realistic organisms the spirit is the same whatever we have done for

spherical cases you take the appropriate shape, you can solve it numerically or in very few

cases maybe you can solve it analytically, but this is the base this is the crux of it. And, this

like to discuss is also true not only for the cell signaling problem, but a similar approach

would also work for this diffusion and capture sort of problems. 



(Refer Slide Time: 41:42)

So, if you are talking about microtubules where the tubulins, subunits are diffusing and are

getting captured at the tip of the microtubule. You could do a sort of similar calculation and

ask that what is the rate at which this tubulin units subunits will arrive at the tip of this

growing microtubules? So, this is these are two concrete examples they thought I will discuss

one is frap the other is the cell signaling. 

Next; so, we will continue with diffusion next class and we will talk a little bit about first

passage properties of diffusion, ok. Alright that is all I have for today. 


