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So, now we go on to the more formal aspects and luckily this book of Raymond has a

nice bridge to going from single particle Quantum mechanics to the Field Theory. So,

towards transition to the quantum theory and let me also make some pre remarks and

then repeat them again because these are very important remarks without which we will

all get lost in formalism. So, some remarks can be repeated.
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So, we can say towards QFT Greens functions. So, in QFT we find that for a field ϕ1 the

set <0|ϕ(x1)ϕ(x2)…...ϕ(xn)|0> with all possible values of n captures all the physical

effects of the theory. So, the purpose of quantum field theory or any quantum theory that

you have is to be able to calculate endpoint functions. What the mean and how we use

them will come out later, but you can just think about the fact that if you had some very

general function if you know all its moments in terms of statistics then you can always

recover the original function.



So, the contents are all in all the n-point functions and that is what we are going to move

towards and towards that let me also give away the other main trick. So, the way we

calculate this is to define a generating function. Now generating function will mean that

we introduce an auxiliary function some F(t) we have q(t), p(t), but there is some forcing

function F(t).

(Refer Slide Time: 04:41)

 

And then we define in the presence of F

     ⟨Ο( p( t) ,q (t))⟩F=

∫Dp DqΟ exp(iS [ p ,q]+i∫
t i

tf

dt F (t)q(t )+i∫
ti

t f

dtG( t) p( t))

∫DpDq exp(iS [ p ,q]+i∫
ti

t f

dt F (t)q (t)+i∫
ti

tf

dt G(t ) p (t))

So, you have to divide out by the thing without the insertion of O. Now we shall be using

the path integral only in the q formalism.

So, up to an overall normalization N we write  

                 ⟨Ο(q(t))⟩F=

Ν∫ DqΟ[q( t)]exp(iS [q ]+i∫
ti

tf

dt F(t )q (t))

Ν∫ Dq exp(iS [q ]+ i∫
ti

t f

dt F (t )q (t))
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So, this is technically how it is defined I mean in real life to calculate averages, but for

the  time  being  we  define  this  expression  without  the  denominator,  also  begin  by

considering just q. So, the main trick time about to talk about is that the expectation

value of q of t then is simply equal to variation with respect to F(t) of this object. So,

                        ⟨q(t )⟩F=
δ

i δF (t)
Ν∫ Dqexp (iS [q , q̇ ]+i∫

ti

t f

dt F (t )q (t)) .

So, this is clear right because if you vary with respect to F then a q will come down and

it will automatically reproduce this where O is q and then the exponential will remain as

it is. So, in this is standard state matrix right. So, that is what we are using. So, and

likewise let us say 

                 ⟨q(t 1)q (t2)⟩F=
δ

2

i δ F( t1)i δF (t 2)
Ν∫Dqexp (iS [q , q̇]+ i∫

ti

t f

dt F (t)q (t )) .

So, now what we will do is to introduce the harmonic oscillator in this language as a

warm up to the real thing. We will find that there is a nice analogy of non relativistic

harmonic oscillator to the relativistic propagator because the relativistic propagator is of

the form ( p0
2
−( p⃗)

2
)  that acts like (ω2  - p2  ) the harmonic oscillator; Hamiltonian is

quadratic in q and p so, it matches exactly.
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So, now consider taking the harmonic oscillator. So, this transition amplitude in this case

is aside from the N which we accumulate due to the momentum space integration

                      ⟨qf t f|qi ti⟩=Ν∫Dq exp (i∫
ti

t f

dt (
1
2
m(q̇)

2
−

1
2

m2
ω

2 q2
+qF )) .

So,  for  convenience  we  set  m=1  and  we  also  introduced  a  damping  factor

exp(−ϵ∫ dt q2(t )) . So, then this is equal to

                             Ν∫Dq exp(i∫
t i

tf

dt(
1
2
(q̇)

2
−

1
2
(ω

2
−i ϵ)q2

+qF)) . 

So, note that this ϵ is such that as if you extend the ti to tF to very large values and it picks

up a large contribution to this then it will make the path integral go to 0 it will make it

converge in the limit of ti and tF going to infinity.

But  we put  it  also  not  because  we are  worried  about  our  mathematician  fringe  and

convergence for anything it is actually a very clever device which comes useful. So, to

tell you because you already know from quantum three in the Feynman propagator you

have to have the iϵ prescription (p2 - m2 + iϵ) that iϵ comes out exactly correct with the

correct sign if you pretend to tell people look I am regulating this by putting a damping

factor. So, that is what is nice about the path integral. So, now next thing we need to do is



rewrite this in terms of energy integrals. So, since we are run coming closer to end of the

class time what I will do is, I will write the what we are going towards and we will prove

the formula next time. So, what we can show using this is that

                ⟨qf ∞|qi−∞⟩F=⟨q f ∞|q i−∞⟩F=0 exp(
−i
2
∫ dE

~
F (E)

~
F (−E)

E2
−ω

2
+ iϵ

)
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where the F tilde are just Fourier transform.

So, the point is that this object that was to be computed if you just did the without any F

then the answer for O cannot depend on any q(t) right because q(t) got integrated out

there is a big integral over d[q(t)]. So, the meaning of what we are calculating becomes

clear if you insert this F as a temporary device and then let then drop the F in the end

after your calculated. So, here I should have said one more step was here these are still in

the presence of F, but to get it in the in the end without any F what you have to do is this

and then evaluated at F equal to 0 that is the prescription.

So, now we can see that this expression in the presence of F has no q(t) in it and it is a

function only of F there is no sign of any q in it, but we can now compute the expectation

value of <q(t1)q(t2)> etcetera by just varying with respect to F(t1)F(t2) of course, their

Fourier transforms of this variable, but you can extract the 2 point functions out of this.



So,  this  is  the  meaning  of  this  is  what  we  call  generating  functional  or  generating

function  from  which  by  varying  the  auxiliary  variable  we  can  extract  the  n  point

averages. So, it contains all the information that you need to calculate all the physical

quantities of interest ok. So, from here on I am actually just using Raymond’s book for

next couple of turns. So, you can read it and the comments that I have been making about

momentum space the canonical path integral the phase space path integral as being the

correct thing is also commented by him.

He derives it using more like the more intuitive Feynman approach and assuming that it

is given by Lagrangian,  but then before switching on to these topics there is a short

discussion of why actually  you have to use the p.  If  you do not then you get  some

spurious factors which usually do not bother you ever, but for keeping things straight and

then you do not have to put any N at all you get the exact answer.


