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Path Integral Formulation- III

Last time we completed the Path Integral Formula and this time I will demonstrate some

of its uses. And the whole direction of this is that we are going towards the functional

formulation of quantum field theory. So we can now outline a bit of philosophy of the

course.

(Refer Slide Time: 00:51)

 What we want to do is introduce QFT and in it show how to derive Green’s functions.

So, the most important point is that the most important use of path integral is really as a

generating  functional  of  the  formally  relating  Green’s  functions.  This  is  somewhat

important because after investing so much time studying path integral you might ask

what is the use? Because no chemists ever needs a path integral, no nuclear physicist

uses a path integral, no particle physicist uses a path integral ok. Particle physicists can

derive Feynman diagrams for what is called evolution operator the Dyson method of

deriving. So, what does path integrals good for? The simple answer is they are good for

amusement.



However, if you promote them to fields and instead of paths you are then dealing with

integrals over configurations of all possible fields, then it becomes a very powerful tool

and that is what we are going to call the functional integral. So, the functional integral is

simply a generalization of the path integral and the main use of it is then it is a powerful

method to derive relationships or results dealing with Green’s functions ok. And we can

derive one of the most important thing we can derive is effective potential.

(Refer Slide Time: 04:35)

So, let me just a define effective action; so, these are the things for which the functional

method is useful. And just as a preview like a trailer  of things to come, we had this

formula 

                     ⟨x f t f|xi t i⟩=∫D x⃗ (t)D p⃗ (t)exp[ i∫
xi t i

x f t f

( p⃗ . ˙⃗x−H ( x⃗ , p⃗ , t))]

And now we write the functional integral as,

                 ⟨ϕ( x f t f)|ϕ(xi t i)⟩=∫Dϕ( x⃗ ,t )DΠ( x⃗ ,t )exp [i∫
x i ti

x f tf

(Π .ϕ̇−H (Π ,ϕ))]  

Here note that the integral  over all  the paths.  So,  all  the paths that start  at  xi ti and

terminate at xf tf, but then over the entire possible phase space. And you remember that

all these curly things have all the legal definitions in terms of some √2πℏ and all that



has gone below. So, it is defined like that and in the limit that n goes to infinity. Here we

simply with a great flourish where this Π is conjugate variable of ϕ. 

So, exactly same formula except that now it will be a density and it is d4x and from  xi ti

to xf tf ok. So, we this is what we are going to do; we are going to extend the idea of

things  along paths,  eventually  it  is  integration  over  entire  field  configurations  in  the

functional space. There is another thing I wanted to say which is the tying up of the Fock

Dirac quantization for the weak field system. 
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Fock Dirac quantum theory of weekly couple systems goes over to quantum field theory,

a space time fields. So, here which uses a{α}, a†
{α},…... can be transformed into QFT of

space time fields with some indices ok. So, let me just write Lorentz index because I will

have to start talking μ,ν all that. So, for the time being it is not important what μ,ν you

put there, but it is into QFT of space time fields which is Lorentz covariant. 

So, what does all this mean? It means if you open a standard textbook of quantum field

theory; one standard one and which is nice to read is book by Ryder which we have not

referred to. He will start directly with these with this field theory, but the point is that

there is a connection, but that approach is actually just tells you let us quantize fields. 

Or as motivation it will say well put oscillators at every point in space time and now put

some coupled by spring than in the continuum limit it looks like fields with derivatives



because nearby springs are coupled, but then you ask why are there springs at every

point in space time. So, there is no real abinitio motivation of while those fields come

from.

The really the fields come from here which is simply as we proved a consequence of the

Fermi or Dirac statistics. And if you try to build up the theories of those then you can

introduce this a dagger operators because those states are labeled by purely number. It

does not matter which particle is in which single particle quantum state just how many

particles  there  are  in  a  particular  quantum number  state  and  so,  that  allows  you  to

introduce this commuting or anti commuting operators. 

And then there is this can be transformed to is a slightly long story, which most people

skip because it  is  somewhat technical.  And then they simply write  Lorentz covariant

fields; scalar, spinor, the four vector field and so on, but actually this connection is the

big one.

And from systemic point of view why we should construct Lorentz covariant fields and

not just deal with a a dagger. We wrote a particular interaction potential you remember

which some particles being created, some being destroyed and then some V; that thing is

very cumbersome because you cannot guarantee that there is momentum conservation,

energy  conservation  charge  conservation  and all  the  quantum numbers  involved  and

whatever space time invariance. Therefore, it is much better to use these; now people just

use these and find that it is a nice thing to do, but this connection is what is a rather a

technical one. 

And that is the content of Weinberg volume I. Starting with this it is convenient thing to

use are the space time fields for. So, let me say this much it is convenient to use causal

space time fields by causal is meant some linear combination of a and a†; you must have

done in quantum III, 

                     a=exp[−iω t+ i k⃗ . x⃗ ];adagger
=exp[ iω t−i k⃗ . x⃗ ] .

So, you split the positive frequency and negative frequency parts and so on that is what

we call a causal field and if you construct this causal field then



           ϕ( x⃗ ,t )=∫ d3 k
(2π)

3 √2ωk

(akexp [−iωk t+i k⃗ . x⃗]+ak
+¿exp [iω+k t−i k⃗ . x⃗ ])    

that is what is meant by causal field similarly expansion for direct field for Maxwell field

and so on.

So, starting with this it is convenient to use these and why is it convenient because this is

what ensures and now get ready for the big content of that theorem. 
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The statement is that if you use causal fields; so it obeys locality, causality, analyticity

and cluster decomposition; this is the way I remember it, but to say it more simply one

should. So, causality basically is this Lorentz covariance that influences propagate only

inside  the  light  cone.  There  are  effects  outside  light  cone  also,  but  it  is  a  Lorentz

covariant description; locality means that you do not get actions at a distance.

And that would also violate Lorentz invariance. So, it should be local and unitarily is part

of the causality statement in a way; analyticity is something else, but that has to do with

also giving these causal answers. Causal and unitary answers the last thing is this cluster

decomposition;  which  is  a  compliment  to  the  locality  part.  Because  cluster

decomposition means that if I have some 5 particles interacting and 7 coming out. But if

I begin to separate out a group of 2 of them; so 2 going into 3 and 3 going into 4 or



whatever; if I separate out some clusters then effectively their S matrix elements will

factorize that process becomes independent of this process.

So, that is sort of global implication of locality; that if you really move these things apart

then they are not mutually interacting which then allows you to focus on local physics at

a time; when you do experiment in Geneva, you do not have to worry about what is

happening in Japan. 

So, that has to do with this cluster decomposition that experiments that are far apart are

not  going  to  influence  each  other.  So,  all  of  these  properties  are  necessarily  and

sufficiently obtained; if you use the causal fields. And the causal fields ultimately can be

constructed out of these the Fock Dirac construction and this is the real physical basis of

quantum field theory.

However, you will find people who say  why worry about all these a’s and a†s and so on

just start with some space time fields. And in fact, here the S matrix becomes a crucial

ingredient that we are only concerned about S matrix to be obtained from field theory;

from this quantum physics. 

But there are non as matrix things that we require from quantum field theory; there are

for example, bound state. So, how do you compute bound states out of their ingredients?

Well the answer is in relativistic physics we do not have very good methods at present.

There are the so called goes by the name of beta ansatz and so on to obtain bound states,

but I do not think they have been very successful. So, there was a nuclear bound states

would have been calculated from quarks by now; they have not been. 

So, there are questions that are not answered by the S matrix, but then they can still be

described in terms of causal fields. So, the causal field framework seems to be more

powerful than just this necessary sufficient requirement for the S matrix and this is why

field theory remains of great interest. 
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So, much by way of the philosophy of the course and I waited till the third lecture to lay

this  out  because  at  least  now we  have  seeing  the  path  integral  and  the  Fock  Dirac

quantization. So, you know what we are talking about and as you also know that its only

after the initial credits rolled by that the movie starts rights. So, now, we plunge back into

the path integral and learn how to do some calculation with it. 


