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Now, one of the main consequences of this gauge invariance is that all the charges you

have in the system have to have only integer multiples of q because when λ shifts by

2nπ/q you have to get back the same answer.
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Given two charges, this combination derivative is called covariant derivative. But the

point is that if in ψ1 transformation if λ= 2π/q1, then there is no transformation ψ1 →ψ1. But, in ψ2, we will have exp[i (q2/q1)2π].
So, if the system is single valued under such transformations, then we need that (q2/q1)

must be an integer ok. I guess I have to supplement it by some way in which you can

compare the  ψ with it is original and so on, but the up short is that if the system is

actually unchanged in one sector, then in the other sector should not be stuck with some

phase.

So, if q1 is the smaller number then (q2/q1) should be integer or vice versa whichever is

smaller the other one has to be an integer multiple of that. So, an interesting actual thing

that happened was that Landau and Lifshitz were working out a possible low energy

theory for superconductivity.

So, in superconductivity one deals with a charged effective field which is a scalar. So,

this is the so called condensate but it is charged.
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So, one had to write for it something like that (∇+
iq
ℏ c

A⃗)ϕ . So, Lifshitz recalls in his

tribute to Landau that what should this q be and Landau said just put electron charge

because if  it  is  not  compatible  with electron  charge  then gauge invariance  will  be a

problem. So, he just said let  it  be equal to e. It is twice e because the condensate is

actually ψψ , electron pair condensate.

So, Landau’s choice q=2e for superconductivity ok. Now, that in hindsight and retrospect

sounds a very simple outcome, but it is a very deep one because if you are a theorist

trying to propose something to experimentalist to look for. And if you got confused at

that point you would say, well it can come out any charge then experimentalist will say

well so, what should charge should we look for and so on.

Well, it look exactly like ordinary electromagnetism just turned out with twice the charge

instead of just q it iself; it could out come out 4, but it would be integer multiple of the

charge for compatibility; at least otherwise under closed loops you would not recover

single valued systems. There is a beautiful application where actually the system can

come to 2nπ times it is original value when there are magnetic flux tubes threading the

system ok.  So,  it  is  the  gauge  function  λ is  actually  not  single  valued  if  you have

obstructions where you cannot shrink loops, but we will discuss that separately.



So, we can complete the discussion of U(1) gauge invariance at this point. Now, we go

on to  the  more  advance  topic  of  non-abelian  gauge  invariance.  So,  now this  gauge

invariance  as  I  was  mentioning  here  was  proposed  by  Weyl  that  had  a  relation  to

something else that was going on in general theory of relativity. So, we can comment a

little bit on this whole idea of gauge invariance of symmetry and in the literature there is

actually a difference of opinion how should one refer to this.
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So, if you think as if it is this profound invariance that you can introduce magically someλ which  traverses  through  all  the  equations,  but  never  appears  in  the  final  physics

answers  you may I  think  that  this  is  some kind of  an  invariance  and often called  a

symmetry, but the other opinion is that you just have extra degrees of freedom that you

putting so that the formalism looks covariant.
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For example,  electromagnetism the propagating electromagnetic  wave is essentially  a

plane wave and if you have some preferred directions  ε1 and  ε2, these are unit vectors

then a typical  electron electric  field will  have specific  projections  along this  and the

direction of propagation is normal to this plane but  ε1 and  ε2 are perpendicular to the

direction of propagation. So, electromagnetic field is transverse in a propagating wave, it

can do strange things within this plane it can be rotating or doing anything, but it remains

perpendicular.

Therefore, there are only 2 degrees of freedom and the B field is determined by E field

completely  from  the  Faraday’s  law.  The  true  number  of  degrees  of  freedom  in

propagating electromagnetic wave are only 2. So, what are 4 Aμ’s doing? Now the Aμ has

a great advantage because it is a covariant expression, Lorentz covariant field.

So, all the description, all the physics you want to write you have a test to check whether

the equation are physically relevant by checking that they remain Lorentz covariant. So,

it is good to have a Lorentz covariant notation, but if you do this, then in the internal

space, in the space of possible field values you have some redundancy to the extent of an

entire space time dependent scalar field. So, thus Lorentz covariant description entails

an ambiguity in the field space or rather redundancy not ambiguity. It is ambiguous to

the  extent  that  you  can  add  or  subtract,  but  you  can  therefore  say  that  there  is  a

redundancy of the description.



But, most of the time, in most textbooks and most discussion this thing is emphasized for

it being some kind of a symmetry ok. So, if you think that this is some kind of a paradox

of contradiction well answer is that both points of you are correct and ultimately the

equations remain equations. This is what is good about physics or science. You can put

what word you like, but that is the covariant derivative you will have to use. So, the

answers will all remain the same.

But, by thinking that it is some kind of a symmetry a lot of satisfaction was drawn. The

most important practical implication that it results in is this uniqueness of the charge that

you have to introduce and this is what we will see when we got to non-abelian case. So, I

will just say the real gain is universality of interaction. So, what this means we will see

later. But, idea is what we discussed there it is only one charge value and it is integer

value. So, that reduces the number of independent couplings to be read from nature right.

If you have a metal, then the it is elastic constant changes as you go from one metal to

the other. Won’t it not be very nice if all the elastic constants for integer multiples of

each other, will be a boring world, but and maybe in the nano world something like that

happens.  But,  that  kind  of  universality  reduces  the  need  to  do  fresh  experiments  or

writing  different  description  for  different  substances.  They  all  have  a  common

description.

So, gauge invariance is also sometimes called local symmetry; we also have the usual

QM ambiguity is called global symmetry. In fact, most physicists now like to think that

the QM ambiguity is something superfluous, but in fact the global symmetries lead to

conserved charges. So, global means not space time dependent; local mean space time

dependent.  These  result  in  conserved  charges  by  Noether’s  theorem,  whereas  local

symmetries enforce that the Lagrangian can only be the covariant derivative.
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So, you are not allowed to put only the ordinary derivative ∂μψ, you have to put it in this

combination only. So, it restricts the kind of interactions you can have and as we also

saw this coupling or charge that is a numerical factor, that number is also fixed and at

best  you  can  add  integer  multiples  of  that.  So,  that  is  the  restriction  put  by  local

symmetries.

And,  so  sometimes  Weinberg  calls  these  symmetry  of  interactions  or  dynamical

symmetries. And, these are real symmetries because they give you conserved charges.

This thing review no new conserved charges, but they enforce the kind of interactions

you have. So, that is the distinction between the two kinds of symmetries.

Now, there is also a geometric picture associated with gauge transformations which we

can used to extend this idea to the non-abelian case.
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So, now geometric origin is go back what is called Kaluza Klein theories, well actually

Kaluza theory. In Einstein’s general relativity gravity is described by asymmetric second

rank tensor gμν. Now Kaluza proposed that suppose you use 5-dimensions. So, suppose

we put gAB.

And suppose that this part of the matrix is the usual gμν. Then you will be left with the

components here which because it is symmetric there the same and an extra component

here. And, then Kaluza proposed that since we do not see the fifth dimension maybe the

dimension  is  very  small,  it  is  compactified.  So,  although  it  is  supposed  to  be  a  5-

dimensional metric, so, assume the fifth dimension to be compactified.

 Well, if we do not see it then how will it manifest? Well, the point is it is some kind of a

circle. So, this is the 4-dimensional space and then there would be an internal direction at

each point right. So, this is the fifth dimension. At every point in space you will have this

internal direction which we cannot probe which cause it is too tiny, trying to probe would

be equivalent to exciting these.

But,  think  about  it  they  basically  will  behave  like  Aμ field  because  they  are  four

components. So, you cannot rotate 3 into 4 because this is too small to rotate this into

that, but any excitation here to the 4-dimensional observer will look like a 4 vector and

that will be an additional thing which would be a new scalar not the one we have been

writing before. There would be a scalar.



So, in Kaluza theory the presence of this compactified dimension will appear as ordinary

Einstein relativity plus an electromagnetic vector potential and some new other scalar

degree of freedom and the scale of this will determine the charge. So, this λ was like a

angular variable, but if this circumference is equal to L then the angle would be some

distance travels on this divided by that L and then this charge q could as well be thought

of as determined by this value L in the units of 1/L ok. So, it counts a units of 1/L.

So, because when d reaches 2π/L is when the system has to come back to itself, but the

charge would be determined by the size of the internal dimensions and in 4D description

this looks like Weyl’s gauge covariant potentials. Now, I jump to the conclusion, but this

is the proof that Kaluza gave. So, what Kaluza should was that if you transform it like a

5 dimensional space time metric, but restrict yourself to compactify transformation from

this then effectively for this pieces of the metric the look as if you are doing Weyl gauge

transformation ok. This is the proof of Kaluza.
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So, you start with full Einstein general covariance. So, thus this is like saying we got

gauge invariance out of general covariance.
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Now, I could also lecture your little bit on what is meant by general covariance, there are

2 parts to general covariance. So, general covariance with lower phase G and C is same

as  re-parameterisation  invariance.  This  is  not  a  principle  of  physics.  All  it  says  is

geometrically  you  can  choose  co-ordinate  patches  as  you  like  that  is  what

parameterization invariance means. It has no physical content what is ever. Lot of people

seem to think that sending xμ → xμ’ = fμ(xν). This is there because it is a choice of

coordinates system. It has nothing physical about it..

However, the general covariance of general relativity is that there is a metric tensor gμν
has been singled out such that 

                                                     gμν

'
=

∂ xρ

∂ x ' μ

∂ xσ

∂ x' ν
gσρ  

that when you make the transformation, this is the transformation the gμν obeys.

So, you know the transformation rule for g. So, the existence of a selected out metric

along with re-parameterisation together that is what constitutes the physical law, that the

selected metric has to transform covariantly under the re-parameterisation invariance that

together constitutes general covariance and results in further required that all derivatives

to be covariant derivatives right where the Γ is derived from that this g.



So, it  is  of course,  this  requirement  at  this  is  compatible  with this  is  what  is  called

Riemannian geometry, but that this whole package together is what constitutes general

covariance.  So,  this  at  least  is  a  clarification  of  how  Weinberg’s  book  on  general

relativity uses these words. You will find that at some point is switches from this to this

and the that is the difference between the two.

So, what I was saying was that it is not so much that you have reparameterisation in

variance  in  5-dimensions  that  is  important,  but  that  actually  exist  physical  fields  Aμ
which  will  exactly  transform the  Weyl  way  as  observed  in  4-dimensions  under  the

general covariance of 5-dimensions. 

In 5-dimensions you will  also introduce it’s  covariant  derivative you have a selected

metric tensor and that so in fact, when you propose this curved up you already proposed

a specific geometry. So, you proposed a particular metric in those 5-dimensions and that

is what and how that transforms is what is the physical principle of gauge invariance. So

the gauge invariance can be derived from general covariance in this sense. So, we will

stop here today.


