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Lecture – 21
Gauge Invariance – Minimal Coupling

Today, we begin with the topic of Yang Mills fields, because these are become the corner

stone of all of modern physics. 
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And in other  words this  topic  is  called  non-abelian  gauge symmetry  gauge.  What  is

interesting about this concept is that all the particle physics we know is very elegantly

described in terms of this principle. What it does is that it makes all couplings universal

like the value of the electron charge, everything else is a multiple of that. And therefore,

all  the electromagnetic interactions are determined by one charge,  similarly the weak

force and the strong force.  All  the three  are  described by the  same quote symmetry

principle and so, I put quote marks on this I will explain what that means. And what we

find is that these two are sort of inter twined.

So, together they form what we now call electroweak theory. So, there is an under lined

gauge principle  based  on the  group SU(3)C⨯SU(2)L⨯U(1)Y where  C is  color,  this  is

strong force  and these  two together  give  the  weak force  plus  U(1)EM.  So,  this  is  an



advertisement or trailer if you like of what this topic is all about ok. So, thus all the

known forces at terrestrial level are completely described by this particular framework.
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So,  let  us  begin  this  by  seeing  what  is  the  usual  idea  of  gauge  invariance  or  the

electromagnetism. So, before we get to become very sophisticated,  let us try to track

back how one reduces this and how possibly the first people who made this observation

about this kind of symmetry, saw this and that starts with the Lorentz force in Lagrangian

framework or Hamiltonian framework. 

So, if you see Goldstein’s book which is only one we used to use when we were young,

nowadays  the  book  has  a  co  author  and  it  is  somewhat  re  written.  But  if  you  see

Goldstein’s book this  occurs fairly early and that book contains the proof that and it

would probably be also there in Landau Lifshitz classical mechanics

                                                           .

So, what we do is we propose at this point that E is derivable from a scalar potential

                                                      E⃗=−∇⃗ϕ−
1
c

∂ A
∂ t

.



we know that, this can always be done Faradays law and Ampere's law together will

allow you to do this and  ,  will allow you to write B in terms of a vector

potential.  In that case using this we can rewrite the Lorentz force in Lagrangian form as

                                               . 

And therefore if you find the canonical momentum 

                                                      px=
δ L
δ ẋ

=m ẋ+
q
c

Ax .

So, the canonical momentum of electromagnetism already has the potentials in it not just

the velocities. So, you can then construct the Hamiltonian out of this

                                                H= p⃗ .( p⃗−
q
c

A⃗)−L , 

but the point is the canonical momentum now looks like this.
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So, in quantum mechanics we know that p⃗=−i ∇⃗  and eventually we have to get to a

covariant  form and there is  some mismatch  between the way we write  here and the

covariant notation. So, for example, the gradient operator. So, if we have to write this as

a in index notation then the gradient operator is automatically a covariant vector, contra



variants are written with topper index and co with down index, mainly to remember

whether you are free what whether you are referring to the original frame of reference or

it is dual wall frame of reference.

In electromagnetism what we need is that pi ⟶ pi – (q/c)Ai and as for as I remember

there is a mixed notation here, it turns out that one of these indices is up instead of down

ok. So, if you take x to the contravariant vector then this Ax is covariant and so there is an

opposite sign, but this is the prescription that correctly works.

So, whenever you see minus i∇, you replace it by [-iℏ∇i – (q/cℏ)Ai], but that is same as

-i[∇i – i(q/c)Ai]. So, this is sort of the physics notation and additionally what happens is

that the Hamiltonian gets from the -L it gets a +qϕ.

So, this also means H ⟶ Hold -qA0 and therefore,

                                      i
d
dt

→ i ∂
∂ t

−qA0
=i ∂

∂ t
−qA0=i [ ∂

∂ t
+ iqA0

] .
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So, what we will adopt is that together i∂μ→ i[∂μ+iqAμ] and this is what we will be

using.  The only  problem is  that  you have  to  check that  it  reproduces  Lorentz  force

correctly, if you started with the idea of describing physics correctly and it does match.



So, if this is so then so what? Well the interesting point is that this is the way to couple

electromagnetism  to  charges,  the  coupling  between  charges  and  the  electromagnetic

fields is through this prescription only. Whenever there is a canonical momentum you

replace it by canonical momentum plus this contribution from the gauge fields. So, in

quantum mechanics,  where  we  have  a  Schrodinger  equation  where  the  Hamiltonian

begins with 

                                                       H=−
ℏ

2

2m
∇2 ψ+V ψ .

So, this goes over to 

                                      −
ℏ

2

2m
(∇⃗+

1q
ℏ c

A⃗) .(∇⃗+
1q
ℏ c

A⃗) ψ+V ψ . 

This was observation of Herman Weyl that we have an invariance in electromagnetism. 

So,  for  the  EM potentials  we  have  the  ambiguity  that  the  vector  potentials  can  be

replaced by 

                                      A⃗→ A⃗new( x⃗ , t)= A⃗( x⃗ , t)−∇⃗ λ( x⃗ , t) . 

Again I am using a mixed notation because that gradient is actually from the covariant

notation whereas, I am writing upper index A’s, that does not matter is just to observe

this they were all sign will not matter. So, the point is if you change A by the gradient of

a space time function λ, then the curl of the new A is same as curl of the old A. 

So, this relation does not change and you can also set

                                        A0
→ A0

new( x⃗ , t)=A0
( x⃗ ,t )−∂λ

∂ t
( x⃗ , t) .

This  works  because  if  you look at  the  E field  we can  actually  check about  the 1/C

etcetera 

                                        E⃗=−∇⃗(A0
−∂λ

∂ t
)−

1
c

∂
∂ t

( A⃗−∇⃗ λ) . 



So, this works out correctly if we put a 1/C here. So, because of that notational problem

with up and down indices, I think I need here a plus sign. So, we put a plus sign here in

any case as we are saying it will not matter. So, this will become equal to

                                                   −∇⃗ A0
−

1
c

∂ A⃗
∂ t

. 
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Now, I  have used the word ambiguity which is correct from the goodold differential

equations point of view because given physical E and B, you can always find ϕ and A as

solutions  of  these  differential  equations  because  they  are  first  order  differential

equations, all these are coupled partial differential equations.

The point then is that solution will not be unique in fact, it will have a huge ambiguity,

this if you have tried to solve first order PDE is by substituting into each other you know

that  unlike  putting initial  condition in  ordinary differential  equations,  here the initial

conditions are functions of the variable which is not involved. 

When your partial differential equations all you know is

                                     ∂
∂ x

F(x , y)=x⇒F=
1
2

x2
+G( y ) .
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So, when you are solving them simultaneously the other conditions then help you to

determine G, but overall you may be left with a whole functional ambiguity in solutions

of such partial differential equations and that is exactly what happens here, you try to

find this, they are not uniquely determined by these two equations and so, there is a

functional ambiguity and that anyway you observe enters through derivatives, it is not

directly that there is and there is only one scalar function.

Although there are four components, there is only one overall space time the Lorentz

scalar function that enters whose derivatives cause an ambiguity in identifying the gauge

potentials. Now one other thing I just would like you to remember is that, a Lorentz

scalar is a very strange object. Lorentz scalar is something you are never seen, all the

scalars  you  know  of  will  transform  very  strangely  if  you  perform  Lorentz

transformations.

One of our favorite scalar is length, it is invariant under rotation. So, we think it is a

scalable length is not a scalar Lorentz scalar. So, most things that you know are actually

not going to qualify. In fact, the rest mass is a true scalar, but we already give it away

because we say rest mass meaning mass in its own frame of reference, which anywhere

reduces to particular choice of frame. So, we do not know any space time fields that are

scalars until very recently. All I am trying to say is it somewhat counterintuitive what

space time Lorentz scalar would be, but that is what one adds.



Now, that ambiguity is transformed into magically into some kind of a symmetry and

that was the observation of Harman Weyl. So, going back to the Schrodinger equation we

know that the wave function has a overall phase problem. So, but now Herman Weyl

observes that if for this constant α if you instead put this same λ, then it will then you

can arrange for this whole object to remain unchanged under this.
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Thus if ψ→exp [iqλ (x)] ψ(x)⇒∂μ ψ→[(iq ∂μ λ)ψ+(∂μ ψ)exp[ iqλ(x )]]  and let

                                                     iq Aμ→ iq (Aμ−∂μ λ)

and now then          (∂μ+iqAμ)ψ=exp [iq λ (x)](∂μ+iqAμ)ψ .

Now, when you take this and put it here that eiqλ will come here, this again will act on

this combination, but this combination again will remain unchanged because A will have

shifted and you can bring the overall phase all the way here and this ψ also has the same

phase. So, you can throw away that same phase the whole Hamiltonian has changed by

only an overall phase or you can just replace the  ψ by that new ψ with a space time

dependent phase it will not change the Hamiltonian. In covariant notation it gets even

better  because  it  actually  even  cancels  as  we  will  see  for  scalar  fields.  Thus  with

electromagnetic  coupling  and  above  transformations  of  ψ(x)  as  well  as  eiqλ  ψ(x)
describe the same system and so this is the statement of gauge invariance.


