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                       [ϕi(x ) ,ϕi( y )]=∫ d4 k
(2π)

3 δ(k2
−m2

)ϵ(k0
)exp [−ik .(x− y)]  

which is firstly a real function because, well that is clear in this form. Because it contains

this and minus its complex conjugate. So, if you take out an i then it will become real.

So,  this  is  purely  imaginary,  because  you  are  taking  expression  minus  its  complex

conjugate. So, it is purely imaginary or under exchange of x and y, that it  should be

because the commutator has to be this so, you can check that this integration gives all

and it is Lorentz invariant and it also solves the Klein Gordon equation.

So, thus if you define this to be equal i    ⃤   (x-y), because it will just hit, if you setup the

K-G operator in x coordinate or y coordinate it will go and hit the corresponding one in

then it will just give 0 because it is the free field. Now, what you want to show is that the

general one boils down to some kind of a form that looks very similar to this aside from

an overall density, that multiplies it, which is the finer version of just doing putting a

constant we will see that it has a more detail and gives a k dependent density, which



multiplies it.  Now to do this, we begin with, <0|[φ(x),  φ(y)]|0>; after  all  guaranteed

everything only under a matrix element not as an operator equality. So, what we do now

is that we rewrite φ(x) = exp[ip.x]φ(0)exp[-ip.x] . So, this is by translation invariance.

This translation invariance is actually corner stone of all of the quantum field theory that

is used in S matrix theory. So, P as you recall is the Pμ are the generators of translations

according to Norther’s theorem right. So, the point is the origin of field theory should not

matter.
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So, that is first statement. Therefore, if we take

                      ⟨0|[ϕ(x ),ϕ( y )]|0⟩=⟨0|eip . x
ϕ(0)e−ip. x eip . y

ϕ(0)e−ip . y|0⟩ . 

And, what I do now is I insert complete set of states which are momentum eigenstates.
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So, this becomes equal to the translation operator acting on the vacuum will just all be

0’s. So, that part becomes 1. So, we get equal to

                   ∑
α

⟨0|ϕ(0)|0⟩e−i pα(x− y)
⟨α|ϕ(0)|0 ⟩=∑

α
e−i pα (x− y)|⟨0|ϕ(0)|α⟩

2| . 

So, as you know if we had only the free field, then only the 1 particle state would have

contributed. Of course, this is pα, so it is in terms of total momentum. So, it is not in

terms of number eigen states, but this summation would be much smaller if it was free

field.

But, now it contains everything. And of course, we have to put the terms with x → -x

exchanging x and y so that we get the other term with a minus sign. Now, we want to be

cleverer with this and what we do is we want to write this in the covariant form, because

we want to tied up with that thing. So, to go to the covariant form insert 1 = ∫d4q δ4(q-

pα); so, then this will become equal to



                            ∫ d4 q
(2π)

3 ∑
α

(δ
4
(q−pα)|⟨0|ϕ(0)|α⟩

2|(2π)
3
)e−i q(x− y ) .
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Therefore, it looks like we can rewrite our original expression

                            ⟨0|[ϕ(x ),ϕ( y )]|0⟩=∫ d 4 q
(2π)

3 ρ(q )(e−i q (x− y)
−ei q (x− y)

) .

So, we of course gathered everything as that was not looking nice into this thing, which

is a density, which is obviously positive definite ok. Not only that it is nontrivial only for

q in the positive light cone. So, because this delta function sets any of the values of the pα
which are all physical momenta.

So, now comes the final rearrangement or relabeling is to say that ρ(q)=σ(q2)ϴ(q0).

So, function only of q2 and is non-zero only for q0>0 is the Heaviside theta function. The

further thing that it is function only of q2 is because the left hand side is Lorentz invariant

right. It has Lorentz scalars which are Lorentz invariant, is commutator of two Lorentz

scalars. So, this is the Lorentz scalar.

So, whatever happens on the right hand side it has to come out a Lorentz scalar. And, if

you  look  at  this  whole  thing  this  is  a  Lorentz  invariant  measure,  this  is  a  Lorentz

invariant  expression.  So,  this  be  Lorentz  invariant.  So,  it  is  function  only  of  the

Minkowski q2, but now we look at our expression here, this had almost the same things



in it except for the ϴ(q0) becomes our this function ε(k0). We want to pretend that this

is an integral over this dq2 only and for q2 >0. So, let me just write it as,

                       ⟨0|[ϕ(x ),ϕ( y )]|0⟩=i∫ d m'2
σ(m'2

)Δ (x− y ;m'
) .

So, this is a step that says it amounts to changing the definition of your mass. So, you

have to read it backwards that with this form which looks like that, but with q2 is fixed,

but it is the mass values that keep changing. And, with a weightage factor that is this σ
which is extracted from this density and that is what this expression looks like.

This probably needs a little more elaboration, but this is what we will claim. So,this is

already derived free field function, but with different values of the invariant in it. So, if

we go back we can think of this as the q0 with a delta inserted instead of that delta we

inserted in the free field we have this density.
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But, we write a different dummy variable. It is forced to be positive because it is support

only when q2 is positive and the theta function is there. So, we call it m2 right. And,

whatever remains is an expression that is corresponding to delta function. So, it becomes

as if it is the free field delta function instead of ωk’s, you will be using the q0 replaced by

m2. So, k0’s inside these will be determined by the condition that, they will refer to (m’)2

such that  ωk = [k2 + (m’)2]1/2.



So, the q0 integration is now same as the k integration for the individual ones except that

it is quote on shell on mass shell provided you put the mass value corresponding to this

integration variable. So, it is a just relabeling of the integration variable and imposing the

theta to take it from 0 upward. Now, the power of this formula is that it says that the most

general one, the interacting commutator is just like summing over the free particle once.

So, that particle picture kind of persists even in your interaction region. Accept that you

have to sum over a large number of them that corresponds to all the possible momentum

eigenstates. This is what we tried to argue when we said this Z1/2 thing.
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That not only one particle states, but all kinds of other states, that are so long as charge is

conserved.  So,  all  the  pair  productions  and  everything  else  is  generated  by  these

interacting fields, but we insist that that the energy expression looks like it is some over.

So, this is compatible with 

                                                      E=∑
k

nk √k2
+m2  

as the unaltered spectrum of the full Hamiltonian. Not only that we now claim that we

can isolate the part corresponding to one particle states or the free particle state out of

this. 
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And, note that this is nothing but if you replace α by 1 particle state then this is nothing

but the wave function of the single particle. So, this is equal to then,

                                      i Z Δ(x− y ;m)+i∫
m1

2

∞

d m'2
σ(m'2

)Δ(x− y ;m'
)

Where, m1
2 is called threshold for higher excitations with more particles. This is the final

statement. If, we go back to our assumption that we will take only polynomial interaction

terms remember we wrote the kinetic part and plus the U(φ) or V(φ) with only φ and not

any derivatives.

So, finally this happened, but another finally, is that now if I take time derivative of this,

which should become [Π(x),φ(y)].  This becomes this provided Lagrangian is of the

form (∂μΦ∂μΦ – m2Φ2 -U(Φ)) which ensures 

                                                               ϕ̇
2
=π .
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However, badly interacting the theory is so long as the interactions are only polynomials

in Φ, the canonical momentum will simply come only from this term and will be equal

to Φ.. So, if I now take dot of this I will get [Π,Φ], but which is -1. So, looking at the

full expression here yeah this one. Hitting with this I will get a -1 here, but on the right

hand side I will get a -1 and on this side I will get same things, because these are all delta

of, so there also all commutators like that right.

So that we get 

                                                 1=Z+ i∫
m1

2

∞

d m'2
σ(m'2

) .

All those things become 1, because they are commutator canonical commutators.  So,

they become 1 or -1 depending on which order you differentiated,  but this is what it

becomes. So, this is a very nice result, which shows explicitly that 1 is equal to Z plus

some positive stuff ok.

So, Z has to be between 0 and 1. Now, this was a very important thing back in the days

of renormalization, because everybody was so scared that everything was diverging and

there were infinities. So, Kallen Lehmann were the ones to prove this representation first

to reassure people that the wave function renormalization is going to be less than 1. But,

if you do it in quantum electrodynamics then it comes from the photon wave function



renormalization  comes  from  this  graph.  Because,  it  is  AμAν.  And  this  piece  when

integrated as to be reabsorbed as just ordinary propagator with a redefinition, it could be

a Z1/2 at each end. 

This two particle content has to be absorbed in the free propagator well. So, you do not

get any dot there you only get renormalization, but this thing is log divergent, it is not

finite at all. So, there is a psychological contradiction between the 1 loop perturbation

theory  answer  for  what  Z  is  and  this  rigorous  proof  which  did  not  involve  any

assumptions about anything except that the interaction is purely polynomial ok, that is

the only main assumption involved. So, Kallen latter proves a theorem that says even in

quantum electrodynamics out of the 3 renormalization constants,  this  renormalization

and renormalization of electric charge and of the electron mass. Out of those 3 at least

one has to be finite cannot be infinite. And, that goes back to being able to prove this for

the single particle.  So,  this  is  only one field.  Now, you had several  fields and some

complicated things were happening, but he proved a non perturbative theorem that at

least  1  out  of  the  3  renormalization  constants  remains  finite  even  in  quantum

electrodynamics.

And, then one fine day his plane crashed. So, otherwise Kallen was quite a,  I  mean

challenge to Schwinger and others because he was proving various theorems without

having to take records to real perturbation theory, but well that is what the outcome of all

this consideration. 

So,  field  theory  gets  very  suttle  because  you  are  really  dealing  with  uncountable

infinities at uncountably infinite number of space time points. But, you can still carry out

manipulations under integral signs and protected by something's all the other. And, you

can prove some general things that remain valid and they give you quite a bit of insight

into how field theory works and how it relates to the S matrix.


