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So, what we were discussing was Asymptotic Condition and what we want to say is that

we use interaction picture and interaction Hamiltonian terms are only in between. So, it

is H0 here and H0+HI over here, and this is our time. But you might wonder what decides

what is H0 and the answer is that for quantum field theory for relativistic particles. 

So,if each particle has some kind of meaning on its own, then we expect that the total

energy

                                              E=∑
k

nk √|k
2|+m2

where nk is the number of particles with momentum k and most importantly that m is the

physical mass. 
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In particular whatever you write has to be valid in the rest frame of at least some set of

particles. So, you can boast to that frame and then those particles are at rest. So, it should

just be equal to n(k= 0) m. 

 But if you change to another frame of reference some another k may be set to 0. So,

from relativistic invariance and provided there is a particle like picture expect that the

total energy of the system would just look like this at any instant of time and therefore,

what we expect is that asymptotically as well the free Hamiltonian should be that which

contains the physical masses of the particle. So, we choose H0 s.t.

                                        H 0=∫d3 x (
1
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π
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+
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|∇⃗ ϕ

2|+ 1
2
m2

ϕ
2
)  

with m2 the physical mass. 

So, therefore, Hamiltonian could be H = H0 + ∫d3x U[φ(x); gi], let us not put derivatives

for the time, keep it simpler, take this kind of a Hamiltonian density. So, it could be like

this  and you would contain some couplings gi and we also assume that  there are no

bound states, well if they are then we will kind of leave them out ok. 

So, if they have the reasoning does not collapse, so subtract them for the time being. So,

so long as the existence of bounds states is not going to change the physical mass of the



particles this assumption is ok. So, the point is that we assume that the full Hamiltonian

has a spectrum like this. 
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So, this is required or this is one way of ensuring and the accepted way of ensuring that

the double limit S exist for the unitary operator of time evolution. So, the interaction

picture is defined by this making the split H0 and HI and you know how it works. 
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So, quick recall that in the interaction picture i(∂/∂t)|ψ t>I = HI|ψ t>I  and



                                       −i ∂
∂ t

ΟI (t)=[(H 0)I ,ΟI (t )]  . 

So, H interaction in the interaction picture is same as H0 in Schrodinger picture. So, the

point is this is how you define the interaction picture and then because of this the time

evolution and U is the Green’s function of this equation. 

So, you want to write |ψ t>I = U(t, t’)|ψ t’>I. It is something that just propagates it

from that time to this time and therefore, satisfies the differential equation

                                          −i ∂
∂ t

U (t ,t '
)=[(H0)I ,U (t ,t '

)]  

and this has opposite sign of the general rule for the operators. 

So, U is the unitary operator that implements time evolution in the interaction picture and

the S matrix is defined as the limit when you take t and t ’ to go to +∞ and -∞. So, the

point is that the region where you can set HI= 0 becomes smaller and smaller as you go

further and further away, and this  limit  has to exist and the limit  exist provided you

assume that the spectrum remains the same and that the H0 assumes the same spectrum as

H as you go to +∞ and -∞. 

So, this is the sort of nuts and bolts thinking behind making these provisions. So, this is

end of the recall.  Now with all this last time we saw that the field in the interaction

region will have more content than the field in the asymptotic region. So, the thing is the

other important theorem of field theory is that we argued that the φin(x) at t = -∞ ( andφout(x) at t = +∞) create only one particle states. So, we say <1|φin(x)|0> = 1. So, the

creation operator from this will create one particle out of this, its overlap with this will be

1 and then there is the delta function which will give you 1. On the other hand for φ at

finite  times  in  the  presence  of  full  Hamiltonian  to  have  more  content  than  this  and

therefore, we expect that the free one particle state is less than 1. So, we set and this is

where we introduced the wave function renormalisation.  So, you have probably done

renormalisation or are going to do. So, this already sets the story for what has to happen;

in the free Hamiltonian we have a mass parameter and we have these couplings.  So,

when we write this Hamiltonian formally we have so called unrenormalized masses and

couplings. 
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But eventually after you take account of interactions within the S matrix formalism, you

have to ignore some of the diagrams and renormalize the couplings. The mildest kind of

renormalisation that is required is to change the normalisation of the field itself and that

is already seen at this level you do not have to do any diagrammatic calculations to see

that you actually need to renormalize the wave functions. 
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So, thus we expect that at t = +∞ and -∞, φ(x) →φin/out(x)Z1/2. And that Z we expect

same for in and out because after all the evolution is unitary. So, the normalisation from



this end to that end does not change. So, Z is the same in both in and out regions, but this

is what we expect because Z is the number between 0 and 1. It becomes 1 if it is free

field theory and further the caveat is that the above is not an operator, although this is

about quantised fields. 

So, when we withdraw from making the full  operator assumption to only for matrix

elements, what it means is that if you take higher powers of this statement then they may

not  hold because  then  you have  to  do  matrix  multiplication  of  and you get  a  more

complicated answer. So, do not expect that  φ2(x) →φin2(x)Z , but  φ itself we expect

this to happen. 

Because the  φ2 operator then has intermediate contributions from various other states.

So, it may not hold. So, now I want to show a slightly intricate derivation I hope that I

get it all right.
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So, this is called Kallen-Lehmann representation. So, what is the representation is about?

So, the representation is about the [φ(x), φ(y)] in a form understandable from free field

theory,  this  is  what  the  representation  does.  It  rewrites  the  general  interacting  field

commutater in terms of expressions that refer to free field quantities. First begin with

[φin(x), φin(y)] , φin  could be out also, but let us just do φin. consider this commutator.

So, this is not time order product, this is genuine [φ(x), φ(y)] which you know has to be



0 at equal time, the canonical commutation relations say that this has to vanish at t=0 ,

but it is for general arguments x and y. 

So, we have to first compute this. So, the easiest way to do it is to say I will split it up

into φin+, φin_. So, we will drop the in for the time being. So, [φx++φx_, φy++φy_] where

these are the positive and negative frequency parts. So, they contain a and the negative

frequency part contains a+. Just since we have not done field theory fully together, let me

just say specifically in my normalisation 

                                    ϕ
+
=∫ d3k

√(2π)
3 2ωk

ak exp[−iωk t+i k⃗ . x⃗ ]  

and φ_ is the dagger of this. 

So,  plus just  means positive frequency and the -i  occurs because of the Schrodinger

choice of +id/dt as the energy. So, this is what we mean by the positive frequency part

and our convention is that 

                                               [ak , ak '

+
]=δ

3
( k⃗−k⃗ '

) . 

So,  in  these  commutations  this  with  this  will  give  0  because  they  both  contain

annihilation operator. 
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So, we have to worry about  [φx+,φy_] which will be equal to

                 ∫ d3 k d3 k '

(2π)
3 2√ωkωk '

exp [−iωk t x+ i k⃗ . x⃗ ]exp[ iωk ' t y+ i k⃗ ' . y⃗ ][ak , aK '

+
]

                                ∫ d3 k
(2π)

3 2ωk

exp [−iωk (t x−t y)+i k⃗ .( x⃗− y⃗)]

So, putting it altogether we will see

                         [ϕi(x ) ,ϕi( y )]=∫ d3k
(2π)

3 2ωk

exp [−ik .(x− y )+ik .(x− y )] .

So, now, this looks a little awkward you cannot take much sense of it, but you can be

clever and rewrite it as a try

                                      ∫ d4 k
(2π)

3 δ (k2
−m2

)exp[−ik (x− y )]  .

If you do this then basically this sign will come out wrong. So, let us just check this. So,

this is equal to 

                                         ∫ d3 k
(2π)

3∫dk 0
[
δ(k0

−ωk)

2ωk

+
δ(k 0

+ωk )

2ωk

] .

If you really followed this true, you actually recover each term correctly because all you

have to do now is to do the dk0 integral, set k0 = ωk, here which will give you this and in

the second term k0 = -ωk. So, it will give correctly this with the k0 understood as -ωk and

the d3k signs can always be flipped; you know if it here it will be -ik0+ik.(x-y). When it

becomes exp[-i-ωk(tx-ty) + ik.(x-y)] we are fine, but when it becomes exp[i-ωk(tx-ty) + ik.

(x-y)] you are still stuck with  +ik.(x-y), but that can be flip to minus without costing

anything because this d3k can be flipped and the Jacobian of going from k to -k is 1. So,

it does not change anything. So, that can be reversed and so, you recover this term as

well as this term, but the sign comes out wrong. So, to take care of that and the whole

exercise now is if we go towards this then we have a Lorentz invariant expression. 

See so far we were just commuting and we were getting something a little unclear, but

once you cast it in this and because of the d3k integral, it is it looks non covariant, but



now  you  have  d4k  integral  at  delta  function  that  involves  only  a  Lorentz  invariant

product, I mean magnitude of k and this is a Lorentz invariant inner product. So, the

whole function becomes manifestly Lorentz covariant except that this sign cannot wrong.

So, we need minus sign and to cure that we insert a function k0 /|k| into this. 

So,  and  this  you  might  call  ε(k0) which  is  also  invariant  under  allowable  Lorentz

transformation.  So long as  you do any normal  Lorentz  transformation,  a  axis  that  is

positive  time axis  will  remain  positive time axis.  So,  this  is  Lorentz invariant  under

orthochronus transformation, which are the connected set. We have disconnected set if

you take the full invariance group of the Minkowski inner product, but the connected one

that you use physically is the so called orthochronous one.


