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Okay, so far we have done in a very elaborate fashion, the hydrogen atom problem in spherical

polar coordinates doing separation of variables and we tried to solve it elaborately and looking

at differential equation how it looks like the familiar special functions equation. Now, we want

to slightly go into a way which is applicable to all the central force problems, what is the central

force problem?

The potential energy is; potential energy is dependent only on the radial coordinate so suppose,

your potential energy is dependent only on the radial coordinate, what happens under rotations

that is why it is called central force problems, they are rotationally invariant systems right, so

whenever  we  have  a  rotationally  invariant  systems,  you  can  start  seeing  what  is  the

corresponding operation like translation.

(Refer Slide Time: 01:42)

Translationally, invariant system mean, what is the corresponding operator, suppose you want to

take a function f of x + epsilon, this is translation, I can write as a Taylor series, right, is that

correct an infinite symbol translation can be written for any function this way but now, I can

rewrite this as f of x + epsilon; del/ del x, I will try to write it as a Px operator okay, what do

you have to do? – i/ h cross can I put; for an infinite symbol 1.



If it is not infinite symbol, you can continue the series, there is no minus okay, yeah, - ih cross

del/ del x is Px, so if you want to write del/ del x, then you can do this, good, so for an infinite

symbol, translation you have the corresponding differential operation is del/ del x, which can be

interpreted as if it is the momentum operator. So, now I will ask you the next question, if I take

a r vector and do an infinite symbol rotation, a rotation operator, what is the rotation operator?

Let us take the rotation to be rotation by a small angle about z axis, what will that be; is cos

delta theta let me call, sin delta theta - sin delta theta cos delta theta, 0 0 0 0 1, can I do this for

an infinite symbol. So, what is the R; for delta theta small, keeping only linear term in delta

theta, this can be written as some 1; 1 delta theta 0 - delta theta 0, sorry 1, 0 0 0 1, right, can I

do this?

So, what is this; it is f of r vector + this half diagonal matrix, so you could perhaps write it as

some delta theta cross r vector, check it out, I am doing this for a rotation about z axis, just for,

so let us keep this rotation about z axis and put this theta also with about z axis, you understand

what I am; if you do a Taylor series expansion, the first term will be f of r, the second term can

be written as; this I want you to do yourself but just you can yourself try and fiddle around and

see what the second operation can be written as.

And you will see there will be a angular momentum operator, okay, you will see that it will be

like f of r + delta theta z Lz for f of r, leave it you to check, not going to do it right now but so,

basically I am trying to drive the point that a translation can be for the wave functions also, a

way by infinite symbol translation, if you want to achieve, you need a linear momentum, if you

need an infinite symbol rotation, you need an angular momentum.

If you do a rotation about z axis, you need the z component of the angular momentum, so

angular momentum is conserved in rotationally invariant system is what you have all learnt in

classical  mechanics,  right  how did you check that  the angle of momentum is conserved in

rotational  invariant  system,  take  Kepler  problem  or  anything  Kepler  system  central  force

potentials.
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How do you show that dL/ dt is 0, the Heisenberg's equations of motion which you do which

shows that the Hamiltonian, Poisson bracket, right, Poisson bracket of any component was that

0 for rotationally invariant system or central force but economically, what you have to do, this

will  become 1/ih cross, is that right? so hydrogen atom problem is a central  force problem

which is rotationally invariant and we expect the left hand side to be 0.

And  that  is  possible  if  Hamiltonian  commutes  with  angular  momentum,  right,  they  are

compatible operators, so this means hydrogen atom problem, all central force includes all V of r

potentials, need not be this hydrogen atom, rotationally invariant systems, angular momentum

is  conserved  in  classical  mechanics,  (())  (07:37)  theorem  says  that  the  rate  of  change  of

expectation  value  of  angular  momentum is  conserved  and  using  your  Heisenberg’s picture

equations for motion or Schrodinger picture on the expectation values.

So, this is not a right thing, so I need to put an expectation value here okay, if you say that the

states do not evolve in time in Heisenberg picture, I can remove that expectation value, it is not

required, I can write an operator here, everybody is familiar with this, right, so this then I am

looking at Schrodinger picture but I could write it in the Heisenberg picture as an operator, this

is Heisenberg picture.

So, all central force problems, angular momentum commutes with Hamilton, how do we see

this in the hydrogen atom problem, we have done the psi nlm but we never looked at it from

this point of view and that is why I was bringing in this angular momentum operator, okay, so I



let  me  just  briefly  tell  you  the  angular  momentum  operator  and  how  angular  momentum

operator commutes with the hydrogen atom Hamilton.
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L dot L is what we call it as Lx square + Ly square + Lz square, in order to study spherically

symmetric systems, we use this r, theta, phi and you can make a change of variable and rewrite

all  these  Cartesian  components  in  terms  of  spherical  coordinates,  what  is  Lz  in  spherical

coordinates and you can show that Lx; please check this just a change of variable, write this as

R cross P x component, rewrite it in terms of theta phi similarly, Ly.

And Lz will be a - ih cross del/ del phi, so it is just del/ del phi, it is going to operate on which

part of the wave function, only the phi dependent P, which is like e to the im L phi, L squared is

also formally you can try to write Lx square + Ly square + Lz square, you combine this and I

leave it you to verify this okay, why am I doing this? My aim is to show that the Hamiltonian

commutes with let us say Lz, Hamiltonian commutes with L dot L.

If  it  commutes  with  Lz  it  is;  it  better  commute  with  L dot  L also,  each  Li  it  is  going to

commute.
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So, how do we do this, so this is the differential operator position representation for the angular

momentum z component and the L dot L now, it is for you to check to take Lz on the hydrogen

atom wave function, I already pointed out that it is going to be on the 5 dependent piece of the

wave function which is roughly e to the i ml5, so it will give you del/ del phi, there is an ih

cross here, so you will get ml h cross.

So, what do we see; we find that hydrogen atom wave function is an Eigen function of the Lz

operator  is  that  expected,  compatible  operators  if  you  have  should  be  the  wave  function

solutions, if you have 2 operators; a and b, the Eigen functions of a and b will be simultaneous

Eigen functions, these were Eigen functions of the Hamiltonian, we explicitly see that I do not

know  whether  you  all  see  the  thrill  that  rotationally  invariant  system  Hamiltonian  has  to

commute with angular momentum components.

That means, if it commutes you can write a simultaneous Eigen basis for both the Hamiltonian

and Lz and it is happening, this is an eigenvalue equation, what is the Eigen value; Eigen value

is ml h cross, what about L dot L; this also you can see that this will be the operator form for the

your theta phi part of the wave function. Please go back and look at the theta phi part of the

wave function and you can see that you can pull out an eigenvalue which is not L square.

But L * L + 1 times H cross, will you go and look at that theta part of the wave function, so you

will see that.
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So,  L  squared  operator  on  your  omega  of  theta  phi,  so  this  operator  is  exactly  like  the

differential operator which was in front of this omega of theta phi and you can show that it is C,

which was l * l + 1 times h cross on omega of theta, why only theta and phi are affected;

angular momentum, when you write the differential operator position basis you see it is only on

theta phi; the theta phi.

So, your wave function when you write psi r theta phi, you could write it as R of r omega of

theta  phi  and then when you try to  write  the differential  operators,  a  differential  operators

nothing but your L dot L operator, you can check that out, we wrote that differential operator

explicitly there but please you can go and check that the differential operator which we have

which involves the sin theta del/ del theta.

So that operator can be written in a compact fashion as L dot L operator and this one was from

the differential equation that we compared it to the spherical harmonics and we found that the

solution is l * l + 1, okay, there is a h cross square coming up here because of the definition of

the L square, so please check this, l * l + 1, so what is this? This is also an Eigen value equation

putting a R of r does not matter, does it matter?

So, L squared on psi r theta phi is nlm is l * l + 1 h cross squared psi nlm r theta phi, so the

Eigen value of the energy Eigen functions for the L square operator is going to be l * l + 1 H

cross square that is what at least we see from the hydrogen atom, okay.
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With  this  data,  couple  of  things  which  you can  start  attempting  is  orbital  magnetic  dipole

moment,  sure  you  all  know  this,  right  Bohr  magneton  multiplied  by  the  orbital  angular

momentum is the magnetic moment, right, this is the Bohr magneton, L is angular momentum

suppose, I take the z component of this magnetic dipole moment operator act on this wave

function; be an Eigen state or not an Eigen state; going to be an Eigen state, going to give you

H cross cancels, you have a minus ml Mu v.

And similarly, the magnitude of the Mu vector, you can do Mu dot Mu, if you do Mu dot Mu, it

will be L dot L; L dot L on the state is l * l + 1 h cross square, if you want the magnitude, it is

not just L, it is a square root of l * l + 1 suppose, you have a function of this L; all operator they

will also be Eigen states that is all I am trying to say, so where we have used L is; is this and l

squared is l * l + 1 h cross square.

And also you could remember that this is what I was saying, this operator which I have is your

L squared operator on omega and C was l * l + 1.
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So, why am I slowly going into this typically, you will have interacting with the magnetic field,

what is that effect called? Zeeman Effect, so what will be the term in the potential energy you

have to add; Mu dot v, if you turn on a magnetic field and if the object has magnetic moment;

orbital magnetic moment there will be a Mu dot v, so what is our aim? If we add this term, what

happens experimentally, you all know what happens; what happens?

This is a splitting right, they start seeing that some of the levels which you are degenerate, they

separate right, this is what they saw, can we see these some equations, okay so we try and

operate  this  operator,  Hamiltonian  will  be;  let  us  take  Mu  dot  v  or  the  hydrogen  atom

Hamiltonian, add it with a - Mu dot v, when we turn on the magnetic field on a central potential,

you had the hydrogen atoms Hamiltonian and then a - Mu dot v added to it.

So, we know that the hydrogen atom will give you a En energy but this interaction term or this

potential energy due to the magnetic field, we have done this, what is Mu z do? If suppose, you

take the magnetic field to be along the z direction, Mu z will give you a ml time; - ml times Mu

b right, you seen this, sorry I should have put a multiplying that wave function which I have not

done, so please put that wave function.

So, it is an eigenvalue equation again but initially, the energies of those wave functions were

En, they will still be En only for ml = 0 but ml != 0 it starts showing whether it is + or - L or it

goes from - L to + L, there will be distinct levels with different energies and that shift will be

Bohr magneton times the magnetic field is the way of using eigenvalue equations simultaneous

Eigen functions of commuting operators, everything comes into picture, right.



So,  this  is  one  thing  which  you should  see  but  what  exactly  you have  initially, there  was

degeneracy but now, 2l + l states for a given L have different energies.
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So, I said that the Hamiltonian commutes with Li = 0, where Li could be lx, Ly, Lz but for

convenience Lz operator was - ih cross del/ del phi and we found that H and Lz is 0, this is fine,

suppose, you take the Hamiltonian which is P squared over 2m + v of r and then I want to also

add a Mu dot B and I take the Mu to be along z direction, so then what happens here; it is P

squared over 2m + v of r and then this will be a Bohr magneton times Lz quantum number

times Bz okay.

So, let me not write those factors, it depends on Lz operator now, the question you are asking is

whether this new Hamiltonian, this is a new Hamilton, whether it commutes with Lz; it does

not commute with Lx and Ly, the old Hamiltonian commuted with Lx and Ly also but the new

Hamiltonian commutes still with Lz, is that obvious from here, adding a term proportional to

Lz, if I take the commutator with Lz, this term anyway commutes.
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And this will also commute; trivial, so it is a simultaneous Eigen state of Lz and Hamiltonian,

so if you go and write your wave function, write it this way, you will see that that shift will shift

the energy by an overall ml factor and that keeps adding to your energy eigenvalue, so whatever

you found En, will get an ml Mu that is what will happen, I am arguing from a different point of

view that the Hamiltonian; initial Hamiltonian of hydrogen atom commutes with Lz.

But I can also write hydrogen atom + Mu dot b with the Mu z Bz Lz that is also 0, from here

also I can find what is the shift in the energy by using the operator (()) (22:03) even from the

wave function formalism you will see that there will be a shift, so what is happening is that this

one was having a n square degeneracy now, you will see that will get for a specific L there will

be a splitting which is happening and each one will be a; this difference will be a Mu Bb, 2 Mu

Bb and so on, you understand what I am saying, right that is a Zeeman’s split okay.

So, I am just trying to say that you can formally do this also and check out that the shifts in the

energy happens, it is no longer degenerate, there will be a 12 + 1 states for any given L having

different energies and so, the degeneracy gets lifted by this Zeeman effect, L = 0, what is expect

you, will there be this effect? So, L = 0 in the presence of magnetic field or in the absence of

magnetic field, I do not see any difference.

L = 0, is like as if the particle is almost at rest, does not have any, no, it is kind of heavy and

stationary or it is rest that you can treat the state to be at L = 0 and the spectrum will not be able

to say whether you are in B = 0 or B != 0 experimentally, this is not true, what do they see?



There is this additional thing which we never brought in our Schrodinger equation which is the

spin angular momentum.

And we cannot discuss spin angular momentum in non-relativistic Schrodinger equation, non-

relativistic  because  your  kinetic  energy operator  is  P squared  over  2m,  if  you want  to  do

relativistic quantum mechanics, what should be the modification, the kinetic energy or the total

energy has to be written as P square C square + m0 square C power 4, this is the way you have

to write in the square root, right, so that is not what we are doing.

We are always taking the kinetic energy as P squared over 2m which is non-relativistic quantum

mechanics and we are studying non relativistic quantum mechanics which is the Schrodinger

equation and we cannot see this additional quantum number which is the spin quantum number

in non-relativistic quantum mechanics but experimentally, I am not governed by this, they are

seeing what they are seeing.

So, they are seeing even for L = 0, they see degeneracy is lifted but mathematically, I see L = 0,

there is no distinguishing whether we put a magnetic field or no magnetic field, clear okay.
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So that  brings  in  the  concept  by  putting  by  hand  electrons  spin  quantum number  in  non-

relativistic quantum mechanics so experimentally, when they do a transition from n = 3 to n = 2,

they do see that there are small  closed lines which are 0.1 14  nanometer apart,  they cannot

account it without introducing the electron spin quantum number and also in the Zeeman effect

as I said L = 0, did; they did c2 lines.



They cannot account for it just by Mu dot B term which is where Mu is the orbital magnetic

moment and the other convincing thing is the Stern-Gerlach experiment which involves the

beam of silver atoms which are produced and it is made to they are taken to be almost at L = 0

and they are made to go through the single homogeneous magnetic field and they see to beams

coming out. So, these experimental results cannot be understood using Schrodinger equation,

what is the reason?
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This  I  have  already  said  Schrodinger  equation  is  applicable  for  non-relativistic  particles

whereas,  the  electron  spin  is  relativistic  effect,  so  for  relativistic  theory, we need to  study

Dirac’s equation and Goudsmit make these people had proposed a spin quantum numbers which

is same for all the electrons. So, what does that tell us in theory? I have to introduce a similar

term like the way we introduced the orbital magnetic moment, a spin magnetic moment.

And we also introduce a proportionality factor which is the G factor and MS is taken to be + or

– 1/2 if we take this, then we can account for all the experimental data okay.
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So, just like your orbital angular momentum L and Azimuthal quantum number l and ml, you

can have an s; s is always 1/2 for the electrons and you will have an ms which goes from - s to

+ s, if it is 1/2 then it goes from -1/2 to + 1/2 that is why you see 2 distinct lines which is

accounting for the spin angular momentum even though L is 0, even though L is 0, when you

turn on a magnetic field, you see 2 distinct lines, 2 splitting’s is because of the spin quantum

number with s = 1/2 and ms = -1/2 and + 1/2 so, let me stop here. 


