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So, we will do three things today, in three parts and you can remind me to stop a little bit 

after the third part. The third part will be the fun part where we will bring up the 

animations from this public website and look at some of the molecular motions. But I 

wanted to continue with. So, let me start by calling it regular representations or regular 

permutations. 
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So, this actually I personally find the little difficult to register things just because you 

call something regular; does not suggest any property, but you just think about it and see 

why this is important. So, this has to do with embedding of the group of order n into Sn 

ok. We said that this was a homomorphism. Remember, we can map the elements of any 

group of order n into the large permutation group Sn .  

So, it concerns embedding of G or |G| = n → Sn; the symmetric group of order n the 

permutation group. 



So, what does it concern? So, we so, remember the properties. So, recall; how we do this 

map, can be constructed for g ∈ G. And the process was, look at the multiplication table. 

So, we look at this table which will look something like this e a b….... And then there 

will be some element called c, so we have a some ….; c which of course under identity 

will remain c and then begins to do something to this. So, I will just write ca, cb ,…... 

That is what it does, right, it is a product of c and b that row c and a c and b. 

So, we are looking at a and it can continue, of course, below. Now, the way to construct 

�c is simply to first fill the thank you; just for change of color, what we will do is write 

the top line to be this, we simply write out the unaffected ordering of elements here and 

then pick the line corresponding to the multiplication corresponding to the row of the 

element c in the multiplication table and put it as the second line. 

That’s all you have to do. So, it will become c ca cb, etcetera, of course, we are writing a 

composite symbol it will become a single symbol once you know what it is. So, the point 

is that essentially the element is constructed by lifting the row out of the multiplication 

table this endows  this particular element of Sn with certain properties which are special,  

that if you have a very general Sn element, there may well be lot of elements which are 

not touched right, if I have permutation group of 15 elements, a particular permutation 

may affect only the first n and not affect the others. 

So, things like that are possible in a Sn group. So, it is affecting only some subclass of the 

elements in that group, but when you when we are looking at this particular sub group of 

Sn, every single element n is always touched because of the group property of G. 
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So, due to so, Sn can be thought of as containing. So, contains two kinds of elements, we 

define what kind one where all n objects have to be changed or transformed and one 

where some subset of this is the career space we are talking about. So, some subset of the 

career space n remains unaffected. So, what we observe is that our attempt to represent a 

specific group of order n → Sn , necessarily brings out those elements from Sn where all 

elements have to be necessarily touched. 

The embedding �G necessarily contains category 1. So, let us call this category 1 and 

category 2 do you agree with this is because you remember that if you have a group 

multiplication table of group of order n, then any row of this has to necessarily shift 

things around, it cannot say it cannot give cb = b, because then c would be identity 

element. So, if c is a non trivial element its multiplication with e will be itself and it is 

necessarily going to change every other element into some other element. And therefore, 

this kind of permutation necessarily has all the elements changed all the n elements Sn is 

some; so n elements of the career space on which you are doing the operations. So, the 

big group Sn therefore, can contain large number of elements you are not interested in 

where some subset of n remains unaffected. 

In fact, those will be elements of S ⊃ M where M is some smaller permutation group 

right, if I have 15 elements, but I permit only 10, I am effectively looking at S10 not S15. 

So, it will contain all kinds of other elements, but the particular embedding of a group of 



size n when reflected as Sn acting on career space of size n, it necessarily can fix out 

those elements from Sn which necessarily are category 1. So, now, we define what is 

called regular representation or regular permutations I am sorry are this category, so 

either the identity e with changes nothing at all or only category 1 permutations.  

In which every element has to be touched and transformed into something else in the 

career space this kind of permutations have one important property which it sort of. So, 

this is a sufficient condition not a necessary one, but the sufficient condition that these 

obey is that; their cycle structure will come out to have cycles of exactly same size. 
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So, this is the theorem, we are now trying to prove regular permutations in cycle notation 

will have cycles of equal length. So, this is an interesting theorem to prove and the proof 

goes something like this, suppose I have some group element g. So, it is now of course, 

represented through this �  suppose �G contains one cycle of length, l1 . And another 

cycle of length l2 and then whatever else there is, but suppose, it contains two cycles of 

unequal length. But now the point is if I raise this (
π
g)
l

1

, then what will happen is that 

this cycle will have cycle through (l1+1) times and will have return to the original 

configuration. 

So, it is equal to this the first l1 in original config, but what happens to the others? So, if 

l2 is an in compatible number or a larger number. So, if l1 is 8, if l2 is 4, well, you are 

lucky because it will also a cycle through enough times, but if l2 is 5 or is 59, then after 



doing power l1l2 is not going to return to its original form. So, you have reach the 

contradiction that you have two elements in the set (
π
g)  and (

π
g)
l

1

 such that the share 

one cycle, but we already know that this is not possible unless the two elements are 

identical, you cannot have some elements unchanged and some not changed and have 

two different elements right because each element each so this, suppose we call this (
π
h)  

ok; some new element which is where h is actually gl. So, it will be represented by . 

So, this is g
l
1

, therefore, in the � presentation, it will be represented by (
π
g)
l

1

 because of 

homomorphism multiplication property, right. So, you understand that then these two 

elements �g and �h  will share one cycle, but not share the other cycles, but this is not 

possible because it will mean that there multiplication table row, we will share some 

elements, but not share some other elements, but this is not possible because every row 

in this is unique. 

So, if there is a contradiction. So, this is not necessarily in the same form. So, then there 

are two elements �h ≠ �g  , but share one cycle. So, these contradicts uniqueness of or the 

property or the category 1 property of uniqueness of G multiplication table of G, you can 

think of it in two ways or you can think more correctly that it contradicts the category 1 

property that all objects have to be transformed and yeah the uniqueness is required you 

do need the uniqueness property ok.  

So, i.e I will just say contradicts it does not contradict category 1 property category 1 is  

slightly more general thing as we said that is a sufficient condition. So, what I have not 

fixed is the fact that all regular permutations a set of regular this is actually claimed for 

any regular permutation without checking that; it is member of a group, but at least I 

have proved when there permutation is a member of group G of size n, it is certainly true. 

So, in any case this proof works, even if I made a mistake in writing l1 instead of l1+1 the 

fact remains that if the other cycles are not compatible with that length, then this, you 

will get a non unique representation. 

So, what; this is a very powerful theorem which says that when you embed an element of 

size n a group of size n into the permutation group or symmetric group you will 

automatically get groups represented by elements represented by cycles of equal length 

and the smallest example of this group of size four the C4 in C4. 
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So, considered C4 did not we call it C4 s. So, I have a square ab c d and I am basically 

considering �/2 rotations at a time. So, 2n�/4  is the possible rotations. 

So, let us draw the multiplication table that is the simplest way one can see probably 

geometrically, but I just find it easier to do this like this here just now and this was the 

case in which basically b. So, a is the �/2 rotation and b is the � rotation. So, our rotation 

was true, its square was equal to identity, but the others did not square to identity. So, a2 

actually became b you know 2� rotations becomes 2�/2 rotations becomes a � rotation. 

So, aa is actually b, similarly, cc also becomes b because 3�/2 rotation and another 3�/2 

rotation. 

So, it becomes b. So, this is essentially what the multiplication table is. So, we got ab, 

then I have to fill here c and I have to fill here e because a and c are inverses of each 

other 3�/2 and �/2. So, e here and a; so, here I have to put the c and here, i have to put a 

and a. Now, let us write this out a cycle. So, this of course, is the identity element this is 

written as. So now, if we represent this call this 1, 2 and 3. So, let us write �1 according 

to rule, we have devised and then we look at the row of 1 with says a b c e. 

Now, how do we write this in cycle structure e → a, a → b, b → c and c → e. So, it is of 

the form e a b c, but which is same as what we would have written in the 1 2 3 4 notation, 

it is this next let us write �/2. So, what do we get with �2 it splits up into 2 cycles to 2 



cycles e → b, but b →e. So, there is an (e b) cycle and then e → c, c → a. So, there is 

another cycle. So, in our note, we can write this is equivalent to first visible (e b) and 

then write (a c), but it is also equal to in our usual notation, this we would have called 3 

and 2 with 4. 

So, something like this. So, it is now broken up into two cycles, but again two cycles of 

same size. Now a example of size 4 is not a very general one, but we do see that this is 

what happens is there we get cycle of size 4 or we get cycle 2 cycles of size 2 ok. So, we 

can just quickly check what happened can we check what happens to �3, right. So, it 

should be of this 4 cycle form. So, similarly �3 is also of what is the cycle  (1 4 3 2). So, 

we got cycles of equal size. Now this is the very important. Similarly, I can tell you right 

away, if you do the other order four group. 

The Klein group which if you remember had e along the whole diagonal Klein group will 

produce all pairs 2 cycle pairs, it will have no 4 cycles in it. So, you can check that let us 

try to write it in table form and then see what we get. 
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So, check this particular. So, regular permutation I am not completely sure. So, I will just 

check it in front of you. So, I have (1  2  3) and then (4 5) in the usual notation, we will 

write it out as [
1 2 3 4 5

2 3 1 5 4] . So, I do not think there is anything wrong with this 



satisfies the proposed property. So, I think I have to restrict myself to we will consider 

embedding of a group size n → Sn through �. 

Then for that this facts are correct as you know I had 2 here, I was about to write, then I 

didn’t write. So, this is verified for all the regular permutations that occur in representing 

a group. So, at least check for approved for which belong to a group G with |G| = n and 

because if G has to, if the set of these regular permutations have to become elements of 

G, then this multiplication table imp restriction is a powerful one; that each row has to be 

unique. So, what will happen is that this particular thing that we checked will not square 

to the will not represent any group element, we will not occurring any group of order 5 

that much I can guarantee you because you take any group of order 5 and try to 

embedded in this, it will make this will necessarily this argument will then apply. 

That I will I have incompatible cycles. So, if I took this and just squared it I do this and 

then I do it once again, this these two will come back to themselves, but this (1 2 3) cycle 

will not have completed. So, it will amount to having two distinct elements in this table 

whose two of the elements remain same while the other 3 are not same. So, it will not be 

a unique representation and here the argument is quite water tight that you know from 

basic axioms of group theory, it is impossible to have any repeated element in any row 

and it is impossible to have any two rows having any identical element in any column 

because then it means one of the elements is identity. 

The way we defined by just requiring that every element is touched is a little to generic 

that is the broader property, but conversely a group of size n and when embedded in �n 

will necessarily be represented by regular representations, but it does not mean that every 

regular representation will occur in a group ok. As I said, the word regular by itself does 

not register as what it what are the property is it captures. So, there are nomenclature 

problems. 

But as for you so long as you try to embed a group of size and into Sn you will find that 

these properties are correct that it has to break up into any cycle representation will be 

cycles of equal numbers. And in fact, that brings us to the interesting point that at least 

for small size groups where you do not have some n! to worry about, but up to 5-6 size 

groups. You can in fact deduce all possible groups by this requirement in reverse, 



because if you want to write a group of size 5 you are force to have only one group, 

because you cannot break up 5 into equal cycles. 


