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So, next we come to the idea of what is called normal subgroup, or invariant subgroup; 

both terms are used. This is the subgroup H or let us call it N such, that it is left cosets 

and right cosets are exactly same, a subgroup N such that it is left cosets and right cosets 

are the same as sets. 

So, each set in the list of left cosets has a corresponding member from the right coset list, 

so that they are identical sets, so as sets they are identical. So a subgroup N such that 

there it is left coset and right cosets are the same is called normal or invariance subgroup. 

I think we will use invariance subgroup it is easy to quick to remember what it means. So 

what so I we can say gN = Ng for all g ∈ G. 

What this means is that, gnig
-1 = nj, for all g ∈ G and  for given ni , nj  ∈ N. So if you 

pick some element of the normal subgroup and take any element of g do gng-1 you will 

get back element in the subgroup itself. So this is called normal subgroup ok. So, we will 

see examples of this a little later, we can try to see an example of this coset space, in fact 



the simplest example we have we will automatically get a normal subgroup. So let us see 

an example just to be understand what is going on. 
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So, suppose we have C8, this is 8 fold rotations by 2　/8 or in other words have an 

octagon the symmetric group of the octagon, but ignoring reflections and other things ok. 

This has a subgroup which is a C4 　 { 1,e
iπ /2
,e
iπ
,e
3iπ /2

}. 

Now, suppose we take some element of C8 and multiply on the left by this, where I take 

e
iπ /2

, and multiply on the left. What will I get? I will get, 

                                               
e
iπ/2
C 4≡ (e

iπ/2
, e
iπ
, e

3 iπ/2
,1)

 

So, this is 1 left coset, but because there is 2　n/8. I also have 2　n/8, which is so I 

should have 45 degree rotation as well right. 

So, if I have e
iπ /4

then we will have, 

                                           
e
iπ/4
C4≡ (e

iπ/4
, e

3 iπ/4
, e

5 iπ/4
,e

7 iπ/4
)

 

and so you can draw an octagon and check what is happening. This is rotating it by 　/2 

and then this is smaller rotation. This is just to demonstrate that if I take distinct elements 

of G, I may get distinct cosets, but the length of the cosets size to be the same and they 

are all I mean with distinct elements in it. 



Now, clearly the order of C8 is 8 and the order of C4 is 4, the fraction we get is 2, and so 

we expect 2 distinct left cosets. And in fact, we are exhausted both of them here, if you 

now take anything else, so we took i　/4 and we took i　/2. Suppose you took 3i　/4 ok. 

What is going to happen : 
e

3 iπ /4
C

4
≡ (e3iπ /4

,e
5iπ /4

,e
7 iπ / 4

,e
iπ /4)

. So basically you will repeat 

this list. 

So, if you take any other element from the group G, you are basically just going to repeat 

either 1 of this or this. So we see that, that is we exactly get 2 cosets that are 

independently the cosets of this particular subgroup C4. You could have played the game 

the other way round, suppose we pick the subgroup only {1, -1} because in the list of C8, 

1 as well as -1 are there. 

Now, I have a subgroup of order 2, if I start multiplying from the left I will get 4 

different cosets because I had only {1, -1}. If I multiply by say i　/4 it will become the 

i　/4 line, i　/2 line, 3i　/4 line but that is all, you will get 4 different subsets. The in 

other words it will be 8 divided 2 equal to 4 but you see that once you have a subgroup it 

is left cosets will form, the size of the left cosets is exactly a divisor of the whole group. 
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Now, because this is a this group also happens to be abelian group. So it also happens 

that the subgroup is invariant subgroup because, for an abelian group, any subgroup is 

automatically normal or invariant; why? Because need to check the condition that gh1g -1 

= h2 right this is the condition to be satisfied by hi  ∈ H for any g  ∈ G. But this is always 



true because h1, and g-1 commute it is an abelian group. So I can always bring g-1 to this 

side, so in fact it lays h1, for an abelian group. So this can be checked in this particular 

case well it is rather trivial because they are just complex numbers whether you left 

multiplied or right multiplied it is going to be the same answer, so the left cosets are 

going to be same as right cosets. 

So far an abelian group all the subgroups are automatically invariant or normal 

subgroups ok. So this is a property of groups which we will be using later ok. Then we 

do a few more things about the permutation group and let us see we can prove one 

important theorem. So, now we go to the notion of theory of permutation groups and we 

will see a few interesting things in it and hopefully if we cover all the required things and 

prove one interesting theorem.  
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So, let us start by saying representing, so finite groups as subgroups of Sn for some n, 

given any finite group what we are now trying to show is that actually it is a subgroup of 

Sn ok. First we can show that we can write out the elements of any finite group as a 

permutation ok. So the first statement is we can realize it as a set of permutations. Note 

the word I am using realize we had said last time that you can have an abstract group 

which is just specified by some table, and when you produce an example of it you say 

that you have a realization of the group, you where you supply some set of objects on 

which operations can be carried out and then you check that the operations carried out 



obey the multiplication rule given in the table then you have the a realization of the 

group. 

So, suppose somebody hands you a multiplication table, where I have now we have been 

writing like this and we have some e and how shall we label the things a, b something a, 

b, c, suppose we take one particular row in this. Now what is what does this row 

represent? It is equivalent to this element b acting on this top initial row of elements that 

is what this row is producing. So we can write a permutation 　 corresponding to b like 

this, in the notation we introduced last time, right we introduced this notation for 

permutation group that we write a top row and then write the effect that the permutation 

has in the second row. 

So, we can represent the element b like this. Thus all and remember that each of the in 

this row all of this element I mean this realize on the fact that it very crucial realize on 

the group properties that the group multiplication give unique answers, you cannot have 

ab = c and af = c. So the effect of b multiplication here is exactly just a permutation right 

of the elements of this. So thus, for a group of order n, there are elements 　g of Sn. 

Which realize so group G of order and which realize G as permutations. 

So, this looks like a clever trick and what one has to remember is that n is a some 

number, but Sn it is whole sizes n! . So Sn is a gigantic group, but by paying the heavy 

price of considering members of some huge group you at least represent any possible 

group of size N as some permutation. So every possible finite group can be realized as a 

subgroup of Sn, where n is the order of the original group. So firstly I have said, so far I 

actually said subset right because all I proved to you that there exists and element in Sn 

for every element of g. Now we have to check the group property that it actually forms a 

subgroup of Sn needs to be proved. 



(Refer Slide Time: 19:50) 

 

There is a map from any group of group G of order into Sn. So, we have verify that there 

will exists some element in Sn which will realize whatever and g does. But now we need 

to check that it actually forms a subgroup when realized as a permutation ok, to check 

the multiplication rule multiplication is also realized. So what do we need to do? So 

suppose we realize 　b and 　c because we are going to use a1’s here. 

So, let 

π
b
=[
a
1

a
2

. . . . a
n

ba
1
ba
2

. . . . ba
n
]

. So this representation gives you how b is represent as a 

permutation and let 

π
c
=[
a

1
a
2

.. .. a
n

ca
1
ca
2

.. .. ca
n
]

. 

Now, how are we going to compose the two? Well, so also note 

π
cb
=[

a
1

a
2

. . .. a
n

cba
1
cba
2

. . .. cba
n
]

. 

Let us check that 
π
cb
=π

c
.π
b . 

So, b will act first then c will act so 　cb, we should have to multiply 
π
c

.π
b . So b will 

have to act first and then c then we should reproduce the action of cb on this. Now to do 

this we have to use the trick we had introduced last time for multiplication of 

permutations. 



(Refer Slide Time: 23:44) 

 

So to calculate 
π
c

.π
b , we will write 　c in the form ba1, ba2 ,…... Suppose I write the top 

row like this then the by our rules of representation it means that the lower will be equal 

to c(ba1), c(ba2),….. right, it is the same permutation as 　c written here. So this 　c what 

I do is I multiply the top row by b, but do the same thing to the bottom then the 

permutation has remained the same. So this represents 　c as much as this and times I 

write 　b as before which is here, but here I have ba1, ba2 ,…... 

Now, remember the rule we had made that if you have if you can rearrange things like 

this, where the bottom row of right element is same as top row of the left element we can 

quote cancel these 2 like we would like to do in high school and so it reproduces a n 

times c(ba1), and now because of associativity c on (ba1) is same as cb on a1 etc. 

So, this is same as our 　cb right, it is exactly the same thing. So one can reproduce the 

entire group property of any finite group by realizing it as a set of permutations and then 

carrying out multiplications as you would do for any permutation. So thus of order n, this 

is very crucial of order n is realized as a subgroup of Sn, the permutation group Sn which 

is a huge group, it has n! elements where as our g had only n element, but we manage to 

represent it ok. 

So, this is a very important thing to know because you do not have to struggle you do not 

have to worry. So if we are just said that a group means a multiplication table that obeys 

associativity that is why you can say right enclosure that every element is somehow has 



produces a unique product and it is inverse exists, so I have a table. You might worry 

that at order n I might have some very large number of groups and whether I have listed 

them all and so on, but now the point is that every possible group at order n is going to 

be some subgroup of a 　c of the Sn and therefore, some of the properties will be anyway 

inherited from Sn  as well. 

So, this is a very reassuring thing and this is called Cayley’s theorem. So I think we have 

seen quite a few generalities of groups and subgroups normal subgroup, so we will end 

today by saying a few more things about permutation groups, which is yeah so one thing 

is about. So we are now actually going so far we said something very general about finite 

groups and that there subgroups of the permutation group, but now we gone to say 

something’s about permutation groups themselves. 
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 Well they are also called symmetric groups. What is transposition? If I just exchange 2 

elements in a set. In a set of n elements if we exchange any 2, we call this transposition 

operation belonging to belonging to called to Sn ok. If we exchange it is a permutation 

this, but it is an operation on the n elements, this we call a transpositions. Our claim now 

is that transpositions generate all possible permutations given any permutation I can 

break it up into a series of transpositions. 

And therefore, the set of transpositions which how many elements do we have nC2, right, 

I to have to choose any pair. So the nC2 transpositions generate all the n! elements of the 



Sn the and as you nC2  is n! divided by 2 I mean nC2 formula gives you a number smaller 

than n! and that produces n!. The transpositions generate Sn because if you can think of 

any permutation you can do it in sequence of exchanging pairs. 

 Now given a particular permutation if you start exchanging you might sometimes end up 

taking a longer route you may do something back and forth once in a while you could 

have taken a shorter set of permutations, but the number of permutations you will take to 

reach a given number of transpositions you will take to reach a particular permutation 

will be either odd or even and that number will that oddness or evenness will remain the 

same regardless of if you do some redundant transpositions; 　 ∈ Sn can be obtained as 

odd number of transpositions it is called odd permutation and likewise even permutation. 
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Note that if there are redundant transpositions you ended up making there will always be 

even in number. So oddness and evenness will remain the same. From this we arrive at 

one interesting subclass of the Sn group. 

So, if we do not do any permutation at all we treat it as even permutation because there is 

zero, no exchanges. Admitting identity permutation to be even we see that the subset of 

even permutations forms a subgroup right because product of 2 even permutations is 

always even that you can check because of the number of transpositions involved 

remains even, but product of 2 odd permutations becomes even because odd plus odd is 

an even number. And therefore, product of 2 odd permutations does not generate an odd 



permutation, but product of 2 even permutations does and we include identity in that list, 

so then the even permutations generate a subgroup, do not because the lack closure, odd 

into odd is even. 

But even into even remains even and we include the identity element. So certainly this is 

true. Inverse is not so much of a problem and odd permutation the inverse would also be 

odd, but the closure itself is not realized. So the odd ones do not, but the even once by 

themselves form a subgroup. This subgroup is sometimes called An; why sometimes I 

mean this is the standard terminology An. Again through some strange reason called the 

alternating group An. So even permutations of a set of size n forms also a group, it is 

called An and it is the one of the biggest subgroups of Sn. It has how many elements; n!/2. 

The next idea is the idea of cycles which let me just introduce and then we will continue 

next time. So you have a set of elements, but what we are talking about the operation on 

the elements right. So if I have particular order and then they appear in another order, 

how many things did I have to exchange to get from here to there? So we can see an 

example. So we can try to check suppose I have something likes this 
[1 2 3 4 5

3 4 1 2 5 ] . 

This is an element of S5 right. Now can we obtain this as a series of permutations? 

Student: (Refer Time: 39:23).  
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Then according to our rules of representing permutations we are supposed to right this 

out as like this, whatever is below 3 goes here, whatever is below 2 goes here, whatever 

is below 4 goes here and whatever is below this. These are both same. So it does not 

matter what order you started with, but what you are going to perform on it, how many 

operations. This is the statement about realizing a group, there is a base space or a career 

space and there are operations on that career space, we have just little square or octagon 

and we are rotating it. 

So, we could have already rotated a b c d into something d c e f g, but the operation of 

　/2 rotation will still remain 　/2 rotation. So we can check 2 things here I mean, does 

anyone doubt that this can be represented as set of permutations as a transpositions pair 

wise exchanges? How we will we get from this to this? So if I take so 3 and 1 are of 

course, pair wise actually the way it is written it is already of the form 1 and 3 are 

exchanged and 2 and 4 are exchanged and 5 is not exchanged 5 remains 5. So this is a 

pair wise exchange representation of that same permutation. 

But now we are writing it like this. This is a notation in which this is a different notation 

in which 1 goes to 3, 2 goes to 4. Suppose we have suppose we take the group of 

permutation of just 3 elements ok, consider S3. We know that we get (1 2 3) the cyclic 

permutations are (3 1 2) and (2 3 1) and then there are so called anti cyclic permutations. 

So which is in which I transpose only 2 and 1 and leave this unchanged and then I do 

cyclic permutations of this. Now we have exhausted all the 6 elements of S3. 

So, if I have 3! elements in S3, there are 6 of them and; so ideally I could write out this as 

one permutation then I could take this same starting and write this as the second row and 

so on. So these are the all the 6 possible permutations. So these are the representations of 

the objects not the representation of permutations. I have to write out permutation for 

each of them which would take too long, but you know what this means right. So these 

are list of permutations list of permuted order is like this. So I have 6 elements in S3 and 

they are essentially going like this. 

Now, we can see that this permutation that (2 1 3) is essentially one exchange right. So it 

is an odd permutation, so this is odd. Then if I go to (3 1 2), I can get (3 1 2) by first 

exchanging 1 and 2. So that 1 comes here, but 2 is here, now I exchange 2 and 3, so I 

will get (3 1 2), so this is an even permutation; we can check that this is also an even 



permutation because it will it I can exchange 3 and 1 first which will bring 1 here and 3 

here and then I exchange 3 and 2. So again there are 2 permutations it is even. Suppose 

you made suppose as a long list which you have to exchange, you might exchange and 

then reverse the exchange. So you might end up doing some redundant exchanges, but 

those exchanges will always be even in number you will be doing up something which 

was not really required and then undoing it. So it will always remain like this. 

So, these are all even and we of course leave the original order nothing has happened to 

it as even and these are all odd. So this the set of cyclic permutations, so these we 

sometimes called in physics sometimes these are called anti cyclic. But this is the strictly 

physics terminology and these are cyclic permit cyclic order. The cyclic order 

permutations will form a subgroup A3, where as these do not. The other thing so we will 

continue next time. 


