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So, we have seen what is a group the group axioms, we went through the algebraic 

structures and some of the algebraic rules. And the most important thing we went 

through was the idea of equivalence classes and, equivalence relation. And that induces 

what we call equivalence classes. 

So, what we are going to do next is study some more generalities and, then and we also 

introduced the permutation group. And the claim is that permutation group really 

encompasses all possible groups that we can have ok.  

So, what we are going to do today is actually try to see that how permutation group is the 

big daddy group of all the groups, but before that we just proves some more general 

things about a group. And to motivate let me just say that what we try to prove is what is 

called Lagrange’s theorem. 
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So, we have Lagrange’s theorem which says that, if we have if H is a subgroup of G, 

then the order |H| of H is a divisor of |G|, that is the number of elements in a subgroup is 



such an integer that it will be it will divide G as an integer ok, divisor means it only 

fraction behind it will given integer number. 

So, first we need to also define what is a subgroup, I am not completely sure we went 

through this, but the idea is rather simple, rather obvious once you state the title of what 

we are trying to define. A subgroup is a subset H of G such that H is itself by itself 

closed under the given multiplication, whatever the multiplication of the group is it went 

a little out right. So; obviously, also e ∈ H, then H is called a  subgroup of G. 

So, a simple example is let us say the we consider two groups, one was the cyclic group 

C4. So, in C 4 we had basically square, which was being rotated by 90 degrees. So, here 

we can see that � by so, this is �/2 rotations of a square, then we can see that � rotations 

form a subgroup identity and � rotations. So, we have so we can write it out like this 

{ 1,e
iπ /2
,e
iπ
,e
3iπ /2

}. 

So, this is C 4 we can see that { 1,e
iπ

} is a subgroup, which is actually what we had once 

call Z 2, I think Z 2 is just {1, -1} subgroup. Is a sub is a group in its own right, but is now 

a subgroup. It is closed under multiplications and it contains identity. So, it is a subgroup 

ok. 

So, this is the basic idea of a subgroup and one can see that in general, if I have a large 

group, then there will be some subgroup. There is identity and then some elements have 

kind of mutual relationship. So, that this is going to each other, then that becomes a 

subgroup.  

This does not mean that they do not give some non trivial thing when multiplied with 

things outside the group outside that subgroup, but that subgroup kind of talks to each 

other and can be treated as independent. Now, we see the to see Lagrange’s theorem, we 

introduce the concept of cosets.  
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So, think of the subgroup H and consider multiplying it on the left by some element g ∈ 

G and which is generic with hi ∈ H. So, we generically write this set, the symbol gH ≡ 

{gh1 ,gh2  , …… }. 

Now, we see that so, let me draw a picture here, here is a subgroup H and this is the big 

group G, if I start if I take some element g here and start multiplying every element of 

this by g, then I will produce some other image ok. So, this will get mapped here, this 

will get mapped here, something like this, but this image has to include g, because 

identity is also there in H.  

So, it include g as well the image of g multiplication H includes g itself. So, note gH ⊃ g 

itself. Now, is consider so now, we start doing this with every element in g, take g1, take 

g2, take g3 start multiplying everything in H by this. 

We are going to after all the whole thing is finite. So, let me draw fresh picture, thus if 

we take g1 and a g2, we get 2 images of H. And let us try to draw a picture like this, 

where this is G and there is H and now g is here g1  clearly this will be g1H, we can 

similarly have g2H, which is obtained by multiplying every element of H by this g2. 

Question is can g1 and g this two sets, have some overlap these two images, of H we 

created can they overlap. And the answer is that if they do, if they share any element, 

then automatically they will be identical, there is no way of having partial overlap of it is 



impossible to have partial overlaps of or yeah of g1H and g2H, either they are disjoint or 

they are the same.  
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So, how do we prove that well here is we invoke our clever method of equivalence 

classes? So, think of the idea that they are some overlap. So, suppose they overlap. So, 

suppose g1h1 = p. And also g2h2 = p, it does not have to be same h, but suppose 

multiplying with another h 2 right. 

So, if you keep this picture in mind, I multiply some element of this h and produce some 

element here, I multiply g2 by something else, but somehow there is an overlap of the 2. 

So, that they share an element p between g1H and g2H. If this is so, then we then we can 

see that g1h1 = g2h2 ⟹ g 2 
-1 g1 = h2 h1

-1 ∈ H . 

So, if the two sets g1H and g2H share a point p, then it must be necessarily true that 

without any reference to this detailed elements H, g 2 
-1 g1 ∈ H. Now, we prove that this 

statement the g 2 
-1 g1 ∈ H is an equivalence relation ok. So, now, propose a relation R 

such that g1 is related to g2. If g2 
-1 g1 ∈ H, now we try to see if this relation R is an 

equivalence relation or not. 
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So, how do we do that check if R is equivalence relation. So, what are the things we have 

to check 1 is reflexivity an element has to be related to itself. So, we asked the question 

is g1 
-1 g1 = e ∈ H . So, g1 is related to g1 itself ok. Then number 2 we ask for symmetry, 

which is the question if g1 R g2 means g2 
-1 g1 ∈ H, what about g1

-1 g2 right that would 

mean that the reverse, then g2 R g1, but we already know  g2 
-1 g1 = H ⟹ g 2 

-1 g1
-1

 = h-1 ∈ 

H ⟹ g 1 
-1 g2 ∈ H. It is easy to check that that is what will happen, it will be g1

-1 (g 2 
-1 )-

1but (g 2 
-1 )-1 = g2 itself. So, this of course, belongs to H. So, if g2 

-1 g1 ∈ H, then it also 

means that g 1 
-1 g2 ∈ H  that means, it is a symmetric relationship. 

And finally, transitivity here we need here we are given that g2 
-1 g1 ∈ H also g 3 

-1 g2 ∈ 

H, what about  g3 
-1 g1 that is what it means like, if g1 and g3 have to be related, then g3

-1 

g1 ∈ H, but this is easy to check because, all I have to do is multiplied the two things out. 
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So, note that  

                                         
(g3

− 1
g2)(g2

−1
g1)= g3

− 1
g2g2

− 1
g1= g3

− 1
g1  

But suppose this was h1 and this was h2 some h1  some h2 it does not matter. So, it implies 

that g3
-1 g1 is also belonging to which was the third thing to be checked. So, the 

requirement that g2 
-1 g1 ∈ H is the relation between g1 and g2 which is an equivalence 

relation.  

In other word we have proved. So, the proposed R is an equivalence relation, in other 

words we have proved the statement that either g1 h and g2 h are disjoint or they are the 

same. Because the equivalence relation splits the set into equivalent classes, thus G is 

split up into disjoint subsets giH, but which make up the whole G again because, that was 

the property of R it is and equivalence relation, every element of the set at least relates to 

itself that is a property of R. 

So, even if we does not relate to anything it will be a point in the set. So, under 

equivalence relation you have a disjoint subset of subsets, whose union is the whole set. 

So, you have to recover the whole of g as well. So, these disjoint. So, these are all giH 

and sets giH are called left cosets, g1H , g2H etc the distinct once, or you can I mean 

generically you can right any of them are called cosets, left cosets I am sorry under left 

because it involve left multiplication. 



So, if you list out like this every possible g from G of course, there will be a sum that 

will be same because of the equivalence relation, but you can write the whole list. But, 

now we see one other important thing is that any one of cosets g1H has to have as many 

elements as H itself right. So, next see g1H has exactly as many elements as H why is 

that true H is a subgroup. And if I start multiplying by some element g, I should generate 

a unique element of big G out of this multiplication. So, each of the elements that gets 

generated by this left multiplication has to be unique.  
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So, the left multiplication of the whole set H generates another copy of H in G with 

exactly as many as elements. But now you see that the union of these has to make up the 

whole G. So, clearly there is an integer number of copies of H in G otherwise you will 

not recover the whole set. So, equal to number of cosets is an integer, in fact positive 

number right. 

So, H is a divisor of G right. So, right just to repeat what has happened is because we are 

equivalence classes, which have to exhaust all of G, but each equivalence classes exactly 

same size. So, there has to be an integer number equivalence classes into which the G is 

divided. So, this left coset operation is are clever way of proving the Lagrange theorem, 

that G slash H is an integer. Now, there is a related concept which is very easy and just a 

simple extension is the right coset. 



So, similarly we can define right cosets. So, the this is proof Lagrange theorem proved 

ok. So, similarly we can define right cosets, where we take Hg1 multiply by the from 

right obviously, the number of cosets generated this way, will be exactly the same as the 

number of cosets from left multiplication, but the two need not to be the same the two 

both may be different patricians of G. 

The cosets generated can be different meaning we are nothing to say about it definitely in 

the most general case, but number of cosets will be same, |G| / |H| . And we can add here 

to do this you only need to define an equivalence relation, which is instead of g2 
-1 g1, we 

will say  g2 g1
-1. 

So, identify required equivalence relation right, it is clear that g1 will be related to g2 

provided now, we will need to put g2 g1
1 instead of g2

-1 g1, but that is the same thing ok. 

So, you can think about it and try to check directly how this works. So, we have proved 

what is known as Lagrange’s theorem, but now this leads to one more general concept 

about groups, which is that there is a particular situation in which there is greater 

elegance of this kind of idea; which is when left cosets and right cosets turnout to be 

identical ok.  

So, the special case is and mind your right may it all sound abstract, but later it turns out 

that these things actually happen in the groups of atomic I means molecules and solids 

and so, on. And that one can get information over the spectra from knowing other this 

kind of phenomenon happens or not.  


