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So, next what we will do is we will see too more things and that is the end of Lorentz

group that we can do here. One thing is 1 more way of looking at Lorentz group. So, so

far we saw that Lorentz group can be taught of as S O 3 1 with the real generators, L and

K then you complex, if I do some (Refer Time: 00:39) then it looks like S U 2 cross S U

2.

We will now see a third way of representing Lorentz group and that is as S L 2 C. So,

here the observation is that we introduce for any 3 D vector, for any Lorentz 4-vector like

the energy. For example, p 0 p right the 4 momentum of a particle, introduce V matrix

equal to V 0 times identity plus V dot sigma or V dot tau the physics notation, which in

full form is simply equal to. So, V 0 times identity. So, the zeroth component you put

here, but then there i V 3 times tau 3. So, there is minus V 3 sorry plus V 3 and minus V

3 and then there is V 1 minus i times V 2 and V 1 plus i times V 2.

So, the matrix looks like this. Now, the interesting thing is that if you take determinant of

this matrix, then you actually get the Minkowski norm.
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So, note det V is actually equal to take the determinant. So, you get this times this which

is V 0 square minus V 3 square and this product is V 1 square plus V 2 square, but with

minus sign. So, essentially it is equal to V 0 square minus the vector V mod square the

Minkowski norm.

So,  we can see  that  this  norm would be preserved provided we transform this  by a

unitary transformation. So, right because than determinant of u dagger would be equal

with u unitary, then this would be fine or another way of looking at it is if it is not unitary

then you would have found that it would become that u squared. So, so, you can drop

this further time being we will actually derive it. So, suppose you propose this then you

will find that determinant u is product of the determinants of the other side which is

determinant of this (Refer Time: 05:19) remain u dagger, but determinant of u dagger is

just going to be star of the determinant of u, because it just start transpose.

So, it is mod squared of determinant u, thus that u squared equal to 1 this equal to 1 is

sufficient to ensure preservation of the norm, but further to avoid getting changing sign

of V 0 and so on, V 0 the zeroth component in 4 vector is important, because it is usually

that the energy or the time or something.

So, you do not want to change it is sign. So, you require determinant you to be plus 1, it

needs  a  little  bit  of  calculation  to  check  why this  (Refer  Time:  07:03)  is,  but  I  am

skipping it further time being. Thus require that determinant of u equal to 1; this is what



we actually call. So, always started which was most general matrix u 2 by 2 complex

matrix u and we transformed our representation V by u times dagger of that u we dint

restrict any u that point up to that point. And, the only restriction we have finally, put is

that determinant u is equal to plus 1, this is called the special linear group.

The subgroup of g l to c makes the set of allowed u to be in S L 2 C, I mean that is the

definition, if you put know the restriction and 2 by 2 complex matrices of G L and C. So,

determinant should be nonzero, but the only restriction you put is you said the that u to

plus 1, that is called S L 2 C and therefore, S L 2 C is 1 more realization of the Lorentz

group as a group theory.

Now, there is something a little interesting as well if you just, if you just change this sign

V 0 1 plus V dot tau if you put minus V dot tau also everything works ok, because it will

only change signs of V. So, determinant will still come out the norm and so on. So, we

get 2 inequivalent S u S L 2 C representations of so, I will just make in case you have a

read  mod literature  on  this  and nowadays  that  the  (Refer  Time:  09:14)  particles  are

become important to condense meta physics; if you ever read to component formalism,

but let us not mention it.

So, this is 1 more way of thinking about the Lorentz group.
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Essentially means a spinner, but spinner with some direction or something like that ok.

So, that is 1 remark about an additional way of looking at Lorentz group. And finally, I

will end with talking about what is called as Clifford algebra ok.

This is algebra of gamma matrices of the Dirac equation.  So, the thing is that Dirac

invented this; this is 1 of the major applications of group theory to physics. So, the last

bit gets the most exciting, because it was a pulse meant to a whole generation of physics

is; so in 1929 Dirac formalism and Clifford algebra.
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So, in 1929 Dirac proposed in modern form x 0 is c times t and i gamma dot grad minus

m psi equal to 0, this is Dirac equation. Where, Dirac proposed these the matrices. So,

that their anti-commutation relations or should I write it like this you have (Refer Time:

12:33) ones. So, there is of course, identity there are 4 by 4 matrices times delta i j.

So, if you wrote out in detail gamma 0 square basically if this is an anti commutator. So,

it is gamma 0 gamma 0 plus gamma 0 gamma 0. So, that is factor 2 any way it says

gamma 0 square equal to 1, this is that each of the gamma i squared is minus 1 minus the

identity. And, if you take gamma i with gamma j so, gamma 1 gamma 2 plus gamma 2

gamma 1 will be 0.

Similarly, gamma 0 gamma 1 plus gamma 1 gamma 0 will be 0. So, altogether 1 writes

this elegant notation gamma mu gamma nu anti commutator equal to 2 times eta matrix



mu nu times the 4 by 4 identity matrix ok. So, Dirac use slightly different notation, but

this is what it is? So, what is the utility of all this the utility of this was that if you

squared this operator if you applied this operator another time, then you got a relativistic

wave equation d'Alembertian times the m square term plus the m square term.
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So, now, what this says is that if this matrix is your 4 by 4 then this is a 4 component

object the size itself a 4 component object. Here, it says that this is times an identity

matrix. So, each component psi obeys this wave equation. So, this is sometimes called

Klein Gordon equation, but it should mark correctly be called relativistic Schrodinger

equation. So, you might wonder why Schrodinger put i d by d t equal to minus grad

square, the Schrodinger was not done this is 1927 it was 20 years after special relativity.

But, when you did it he did not get the hydrogen’s lines correctly. So, he had to fudge

something.  So,  he  said  [FL]  he  then  applied  the  non-relativistic  equation  got  the

hydrogen spectrum perfectly by using the Laguerre polynomials and all this end of the

story, but in the end of that paper Schrodinger says that ideally. However, we should be

using the relativistic equation and then leaves it at that. Later Klein and Gordon got on to

the job and the realized lot of problems; first was that once you have this you do not have

conserved probability of Schrodinger equation, you get you do not get a psi dagger psi

conserved current ok.



In the Schrodinger non relativistic theory you take side psi dagger psi and normalize it,

but that is because psi dagger psi is the converse density. Here, you will not get any

conversed density like that. So, that is 1 problem of the wave equation, the other problem

which reason why Schrodinger missed using it is, because he was getting this j into j plus

1 and he kept thinking here to put integer. But actually it was not integer it was half

integer ok, which he did not know at that time. So, if he had put half integers you would

have got it right.

So, anyway this is called Klein Gordon equation given Klein and Gordon basically got

very  puzzled  by  this  equation  and  what  it  means  and  so  on,  because  it  was  giving

indefinite probability. So, Mister Dirac said 1 day and said how do I have an equation?

That is both relativistic and gives positive definite psi dagger psi. So, he said I remember

that if I had Schrodinger equation with first order time derivative, I do get conserved

current  density  conversed  density.  So,  it  as  to  be  first  order  in  time,  but  then  by

relativistic invariance it should also be first order in space. And, so put some coefficients

here and then try to see how I recover the Klein Gordon equation.

And, if you do it then on squaring you have the anti-commute this to get the cross terms

to drop out ok. So, that is what Dirac did and it. So, mystified everyone that nobody

understood, it for couple of decades at least and Dirac got from it both positive energies

and negative energies, that happened that you cannot avoid you know the property that

this had. So, Dirac was bold enough to this is what you have to gave to Dirac? He said

the negative energy states are all filled come for ever and by then for me statistics was

known so; he said each state can be occupied only once.

So, if the states all the negative energy more there fully filled then nothing can go into it.

So, we are seeing only positive energy electrons. However, every ones in a while 1 of the

negative energy states may get kicked up to a positive energy state and then you will be

left with a whole there in this filled up C. So, the whole then he argued would act like an

oppositely charged particle of same mass.

So, you would have to have positrons, but he did not know of any positrons existing, but

a new proton existed. So, I said well if you allow me a factor 2 thousand mass difference

between positive and negative charges, then I have a relativistic theory of electrons and

protons ok.



So, this he proposed in 1929 and it was. So, surprising that Niels Bohr said that this was

a good way for catching elephants in Africa, because you write Dirac’s theory on a board

put it put the water hole of the elephants, when the read this theory they will be. So,

stand that you can put them in your truck and take them home so, etcetera.

And for several decades people wondered what the hell this was? Well it turns out it is

just a representation of the Lorentz group, but couched in a different language. And the

point was that this kind of a so, one other way of thinking that people caught on to was

that this gammas wearing some sense the square root of this differential  operator ok.

That this differential operator, which was first order in the derivatives, was like a square

root of this second order differential operator and so, the gammas were somehow square

root of the space time metric ok.

Because, this involves minus d t square plus mod d x squared and that can be seen here

because we are saying that this I put a time mu nu where remember our notation was a

eta 0 0 S plus it is that Minkowski 1 minus 1 minus 1. So, it l is correctly with this if you

put eta here, but now think of this as the metric, but the left hand side is quadratic in

gamma’s.

So, the gammas are somehow taking a square root of the eta metric. So, that was the

main hint people had, then the mathematicians when they heard about it they said, but

physicist are a little slower and they because almost 50 years earlier  in mathematics,

there was a man called Clifford who had identified this algebra which would take square

root of the Pythagorean metric.
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For S O n with metric delta write the delta g, we can introduce gamma i gamma j equal

to 2 times delta i j n times identity matrix of size 2 to the power n 2 2 2 to the power n by

2 ok, which is biggest integer smaller than.

So, for odd for even n we need n by 2 cross n by 2 matrices and for sorry. So, of course,

in 4 dimensions we want 4 dimensional matrices goes as powers of 2 2 2 to the 1 4. So,

that is correct 2 to the power 2 and for odd n we need n minus 1 by 2 times n minus 1 by

2 size matrices.

The main connection between this and the group S O n group please leaves the delta

matrix invariant is that the rotation generators of s o n denoted M i j with i equal to 1 to

n. So, remember this is rotation in the i j plane. We can show that in fact, M i j are equal

to 1 half gamma i gamma j commute anti commutator.

So, how do we show this well the statement is that you know the basic algebra of the

gammas you assemble the M i j out of these as products. So, this commutator make sure

that you do not any get any i i you only have 0 1 0 2 0 3 you do not have 0 zero this

commutator  will  obliviate  that.  So,  there  are  exactly  as  many  M  i  j  s  as  many

commutators as there M i j’S and you can compute the algebra of M i j you will recover

the algebra that I told you last time with M i j M k l it should be delta i j delta times M k

l. So, the algebra of S O n can be recovered by from this by using the Clifford algebra of

the gammas themselves ok.



So, let me check if we have 3 dimensions then we still need 2 by 2 matrices 2 to the

power 1 so, this is 2 to the power that is what I will missing was in 2 2 to the power I

wrote it here correctly (Refer Time: 28:42). So, 2 to the power 1 which is for dimension

3 a  2  as  well  as  3.  So,  sigma matrix  is  will  work  probably  matrix  is  will  work  in

dimension 2 and dimension 3, the gamma matrix is become 2 to the power 2 because 2 to

the power 4 by 2. So, 4 by 4 matrix is are needed in 4 dimensions, but they will also

work in 5 dimensions and so on. And, what one can show is that the M i j exactly satisfy

the S O n algebra satisfy the Clifford algebra.
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So, what Dirac had stumbled on was the Clifford algebra of the Lorentz group of course,

with the big change that it was not delta i j, but eta i j. So, there is quite a few changes of

there as relative sign minus sign and so on, but this is what essentially what the Dirac

equation is, ok.

So, I think we will stop with Lorentz group there.


