
Theory of Group for Physics Applications
Prof. Urjit A. Yajnik

Department of Physics
Indian Institute of Technology, Bombay

Lecture – 40
Representation on Function Spaces – II

(Refer Slide Time: 00:13)

The next thing we wanted to do was the Lorentz group which I will do. So, we have two

things to do either do the Lorentz group or do the realization of these groups on functions

basis. 

So,  let  us  do  the  functions  basis  first  because  that  is  more  that  that  is  not  directly

connected to this relating to angular momentum and we will find some nice results for

Lorentz group but that is later there ok.
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So, next we look at function spaces as carrier spaces. So, that is the big topic that so far

we considered these finite dimensional representations or finite groups; but when we got

go to continuous groups we go to the infinite dimensional representations, but they are

still countable and by extension most physicists also assume that the uncountable ones

also are representations. So, we will see it. 

In  physics  literature  only  non  denumerable  function  spaces.  So,  our  favorite  delta

function actually resides in this non denumerable limit we will see that and so it is called

distribution. So, delta function which we write as dealt of x minus x prime you can think

of it as a matrix x 1 index x prime the other index and you can fold in one function f of x,

do an integration which is like the index summing over x and obtain another vector f of x

prime out of it.

So, and are called distributions. So, delta function is a distribution and this goes from

minus  infinity  to  infinity  right.  So,  this  is  like  a  summation  over  x  prime,  since

everything is in red to highlight I have to use blue, actually the summation over index x

prime and delta. So, delta function is the distribution. So now, we go back to this we will

see  business  what  is  meant  by  function  space.  So,  let  us  consider  functions  over  a

definite interval.
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Say 0 to l; these can be thought of as a vector space. These have the structure of a vector

space. And we can admit complex value functions or we can do it later but we admit

complex value functions as well because we want to write e raise to y ix etcetera. So, we

accepted although of domain is real values we take complex valued functions on that. 

Now, what we need to check for it to be a vector space is very simple. If I have vector

space properties is simply that f equal to c 1 f of x equal to c 1 f 1 x plus c 2 f 2 x where

x belongs to this closed interval and there is no problem. So, we just symbolically we can

immediately check that all the axioms of vector spaces are satisfying.

We can make this vector space also inner product space. We define f 1 comma f 2 the

inner product to be integral 0 to l of f 1 star f 2. So, remember we needed this always. So,

it is like our statement that V 1 V 2, it was equal to V 1 dagger V 2 in this is in matrix

language. If you take V 2 to be a row vector a column vector then V 1 has to be made

into  row  vector,  but  with  Hermitian  conjugate  with  as  a  Hermitian  conjugate,  so

complexified as well.

So, the first term has to be first coefficient to be to be complexified, otherwise we will

not have positive definiteness. So, we need this form. Now, the interesting point is that

two things; there is a structure of a duel vector space which is slightly subtle, but the

other thing that is familiar to us is are is differentiation. So, differentiation is a linear

operator. 
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However, d by dx is not Hermitian. So, next define Hermitian conjugate for operators V

1 comma A V 2 equal to A dagger V 1 V 2. So, we can check this simply in matrix

language. If I take V 1 dagger and act on A V 2 where V 2 was the column vector, so, A

V 2 is also column vector, but this should be equal to A V 1 dagger acting on V 2 because

V 1 dagger A V 2 is something like V 1 i star A i j V 2 V 2 j and that would be equal to A

j i star V 1 i V 2 j. The definition of the Hermitian is that it is A j i star. 

So, this is what we call the Hermitian conjugate of sorry so, I do not have to put any

equality. We want to see what acts as the Hermitian conjugate of A yeah so, I think this is

correct. So, in any case that is the definition of the Hermitian operator. So, for d by dx

note that integral 0 to l f 1 star d by dx f 2 we can use integration by parts and say this is

f 1 star f 2 0 to l and minus integral d by dx of f 1 star f 2. 

Now, to  make  this  into  a  vector  space  we  have  to  put  some  a  periodic  boundary

conditions or some reasonable conditions. So, we can said if we set periodic boundary

conditions on f’s then this will be 0, then the then A will be its own Hermitian conjugate

right. So, now, I realized what I did in a hurry. So firstly, we define Hermitian conjugate

and then next  we say an operator  is  Hermitian,  if  it  is  equal  to it  is  own Hermitian

conjugate. 

So, this equality actually already insisted that it  is self Hermitian self adjoint but the

definition of adjoint is whatever that produces, so, this is Hermitian conjugate is yeah



that is right. So, this was correct and what we say is if this is same as A, then it is self

adjoint; for x to be self adjoint now, we should somehow have this also give the same

answer as this and this happens if we choose the if you put i d by dx instead of d by dx

then when we then we can write this as equal to star of id by dx and still retain this sign

on f 1.
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So, we can start it also by; so, this because it is a total derivative it is just equal to the n

point values and this we set equal to 0 would implied that integral d by dx f 1 star f 2 is

equal to minus integral f 1 star d by dx of f 2 or so the operator id by dx x acts as a

Hermitian operator, provided we put this boundary we chose we restrict  ourselves to

functions that have periodic boundary conditions; 0 and l they have same value. 

So, that is an important condition. Now, the point is that this has a also a group theory

meaning; the operation d by dx has a group theory meaning and that is why it is an

important operator.
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Next we show that id by dx is so, I should put minus i because in physics momentum is

put I mean Schrodinger chose a sign once. So, we have to put this minus here. So, we

show that and it is a matter of convention but that is the physics convention. Next we

show that minus id by dx is the generator of the operation of translation. What does this

mean?

So, far we consider the rotation group which is actually the more complicated things. The

simpler  actions  in  physics  are  just  shifting  the  origin  which  is  called  translation  in

technical language and just as we had the infinitesimal generators of rotation group. We

might then ask what is the infinitesimal generation of translation group and we will find

that id by dx works as the generator. So, to see this first consider active translations in

this is where I get lost sometimes but the signs plus and minus signs consider.

So, let us draw some pictures. So, consider translations shift of origin that is the meaning

of translation and again as we did for the rotations either you have active rotations where

you rotate your vector or you shift the origin which is the passive of the action ok. So,

here, so if you shift origin this is translation but passive and shift of the function or shift

of the state, the quantum mechanical state vector is active translation. 

So, suppose we have a function f and what which sign do I want in the end? So, suppose

which this was the 0 and we shift it to a new 0; 0 prime and this is x axis. 



So, we say that f of; so, I have some new function f tilde of x prime system where f tilde

is I can draw it in blue it is the very same curve but thought of in terms of the x prime

system that starts with o prime system. Then f at some value x prime is same sorry f tilde

function  at  a  value  x  prime  is  same as  the  function  f  at  the  corresponding value  x

corresponding to x prime ok, this is where it is slightly slippery and but it will the only

damage it will do is change the sign overall sign but let me repeat.

So, we want to say I have some functional form f tilde which is to be read in terms of the

blue coordinate system. This functional form in terms its own arguments, its numerical

value is same as what the other function has as a function of its argument x which should

correspond to the point x prime ok. So, the way it is written the domains of both are

same because I have the functional form here is f it is argument is x but x is in the range

of the transformation x to x prime. So, we have made a transformation x to x prime and

this is what it is.

And the x prime coordinates are such that when I have. So, x minus a where this is a. So,

when x prime is zero I should get x equal to plus a yeah so, plus a correct we can see it

here; the x x to x prime transformation is such that when x prime is value is 0 the value

of the x coordinate is a. So, this is the transformation. So, therefore, f tilde of x prime is

equal to f of x plus a. 

So, this is the operation; this operation could be a symmetry operation but right now we

are not saying it is a symmetry operation for some physical system, but nevertheless we

can see that set of all such operations forms a group shift by a 1, a 2, a 3 any real number

right. So, if we let the domain be entire real line is we have now switch back from finite

intervals to entire real line for the time being.
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 So, all the operations x x prime equal to x minus a right because if x is equal to so, right

we; so, we did check that x at x prime equal to 0 is equal to the so, there is a prime here

this is x prime right correct that is the confusion. So, this is x prime plus a and this is also

x prime plus a yeah.

So, all the operations x prime equal to x minus a, so because x is equal to x prime plus a

x prime is equal to x minus a; all the operations x prime equal to x minus a with a again

belonging to R constitute a group where composition is simply the sum of individual

shifts i.e. a 1 followed by 2 is what should we call this things x double prime equal to x

prime plus a 1 equal to x plus a 2 plus 1 is equal to x plus a 2 plus a 1. So, if we do two

successive operations then the equivalent operation is just a 1 plus a 2. So, this is just

ordinaries addition on the real numbers and subtraction. So, the inverse is shift by minus

a and identity is no shift.

So,  this  forms  a  group  and  we  want  representations  of  this  group  on  the  space  of

functions. So, now, we go back to our statement.
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So, to obtain the infinitesimal version; so to determine generators consider f tilde of x

prime equal to f of x prime plus a but put a delta a symbolically. So, that is equal to f of x

prime plus df by dx at x prime times delta a plus, so using Taylors theorem. So, it is clear

that d by dx is the generator of this shift operators; shift or translation symmetry. 

Shift is sometimes reserved for strictly those things that are discrete transformations but

we are going to consider all we have continuum. So, d by dx is clearly the generator and

for  convenience  in  quantum  mechanics  to  make  it  Hermitian  with  respect  to  that

particular inner product we chose minus id by dx.
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With  p  the  generator  and  we  can  see  that  any  finite  shift  can  be  obtained  as

exponentiation because the exponentiation is nothing but the full Taylor series along with

its 1 over n factorials; exponentiation has the 1 over n factorials.
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So, we write but of course, eventually want the it to produce the real values I mean the

for the classical wave function classical functions the usual functions on the function

space while we were using Taylor theorem, we do want d by dx back. So, we can just

write over here for the time being we will just write for the finite shifts we can write like



this exponentiation of a d by dx but in quantum mechanics or complex wave functions

we use this as the operate generator and so, in complex notation ok.
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So, in complex notation, we note the eigen-values of p are so, eigenvectors. Eigenvectors

of p are the e to the i k dot x and we have to normalize it to by something. So, put it N

for the time being. 

So,  the  structure  of  the  functions  on  the  on  the  real  line  can  work  for  these  free

translations and the corresponding eigenvectors in the sense of functions on the in the

function space will be the functions e to the i k dot x in order to have that inner product

we introduced f 1 star f 2 and the generalization to 3 dimensions is kind of trivial; well

one non trivial thing is there.
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So, in 3-D we have f of x and 3 generators p x equal to minus id by dx or pi equal to

minus id by dx i, i equal to 1, 2, 3 with commutation relation that they all commute; the

translations in independent directions all commute and everything else remains the same.

This is a square root 2 pi. So, some N times e to the i k dot x and nothing else much

changes. So, now, we can quickly link these things to what we just did earlier SO 3 and

SU 2. So, the translations was a warm up to see how symmetry operations work on the

functions basis.
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So, returning to SO 3, we can obtain representations on functions of theta phi as the

carrier space and as everyone. So, let us start with the Cartesian description and L z equal

to x p y minus y p x. So, we expect yeah I did not bring out the importance of the shift

operator p as the momentum.

But anyway we are not doing physics right now. So, whatever the operator p is I now

claim  to  you that  whatever  the  translation  operator  p  is  to  obtain  this  Taylor  series

correctly. What we need to do is construct the L's as products of such operations where y

x multiplicatively and p is the shift operator for z and so on ok.

So, we expect that L z will be equal to minus i x d by dy minus y d by dx etcetera and we

do not want to enter all the detail here. If you go to spherical polar coordinates then you

obtain the y Ln is the Eigen functions, I am not writing the operator here. So, we have

the Laplacian operator which can be broken up into d d square dr square plus ok. 

So, we find 1 over r square times and let me symbol well we know what it is and this acts

as J squared or L squared and the y L m which purely from differential equation theory

and Sturm Liouville theory, you will get the Legendre polynomials and e to the i m plus

minus phi as solutions of this.
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So, this we are not as if proving in any great detail but what we want to bring out is the

fact that as operations as operations which constitute a group rotations which constitute a



group, we saw firstly, it is abstract. First we derived its matrix algebra and then we check

that that matrix algebra gives a particular commutation relations for the; so, let me write

it over here this. We connect back to matrix group matrix group SO 3. 
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So, the matrix generators L i allowed representations and we saw that they were irreps

because you cannot escape the those m representations with L squared equal to l into l

plus 1. 

And these exactly correspond to the Y l m Of course this is useful when the potential in

Schrodinger  equation  is  separable  into  r  theta  and  phi.  So,  but  most  spherically

symmetric potentials will give this; So, the Y l m we use are essentially representations

of the rotation group and when there is spherical symmetry it is possible to decompose

the answer for the wave function in terms of the eigenvalues of the symmetry operations

that is what the summary is.

So, that is the connection of group theory to quantum mechanics. These things which

were  first  discovered  in  the  context  of  just  trying  to  solve  Schrodinger  equation

eventually we understand them in terms of group theory. So, result of rotation symmetry

even if it is not symmetric it is at least represented by also applicable to so long as r can

be separated from the partial differential equation because then you will be dealing only

with this part of the Laplacian and the solutions will all be in terms of the Y l m which



being irreducible representations constitute a vector space. They constitute a basis for

representing everything that is in theta and that is function of theta and phi. 
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So, that is the use of group theory that is the group view of what we do in quantum

mechanics. 

So, I think we can stop with this here. 


