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This statement is that, SU 2 is a double cover of SO 3, SU 2 is connect simply connected

it is called the covering group. So, this is called the SU 2 said to be the covering group of

SO 3, and idea of covering group always it is that it has to be simply connected. So,

sometime this is also called universal covering group. Let us see the simplest example of

a covering group consider the abelian group e raised to y theta y theta this pen is not

good with theta going from 0 to 2 pi.

So, this is like the unit circle and under multiplication. So, theta and theta is mode 2 pi

taken  modulo  2  pi.  So,  you  can  multiply  group  elements  in  which  case  by  simple

multiplication,  you will  get theta plus theta  prime in the exponent,  if  that number is

become bigger than 2 pi then you subtract 2 pi maps it back into this range. So, it is taken

modulo 2 pi. Now this space is not simply connected well it is a circle right you cannot

shrinks circle.

So, you can the space is topologically circle call S 1 by topology people, S is reserved for

circles for what reason I do not know, but its S and that one is the dimensionality of that



space. So, it is one dimensional sphere; circle is not simply connected it has to classes of

loops. Actually it has many classes of loops distinguish by how many times? Actually I

am sorry I as for as this is concerned it is circle and only the one copy of it, it has 2

classes of loops distinguish by whether they are. So, I can take this circle; class 1 starts

from here goes back goes forward, goes back goes forward, goes back goes forward and

comes back to this point.

So, this is category 1 I can just keep going zigzag back and do are random walk, without

actually going around the circle, then such a walk I can always shrink to point. But the

class b is which starts from their do whatever hells you want here, but eventually you go

around and then end up here. So, this is category two loop class.

That one you cannot shrink to the first type, because you gone all the way around and

once you ended this was the question for the circle also you start from this point and if

you come all the way around and reach here, that form circle was loops. Now, that loop

if you are allowed to make the beginning an end point is joint then of course, no magic is

left, but the point is that their connected in the end makes the close loop and then there is

no way of shrinking it.

So, there are two classes of loops and they are distinguish this way; the covering group

of the circle or of the u 1 is the real line, you open this up and then you allow it to take

all the values and do not restricted by modular 2 pi. Then topologically then they are

mappable into each other because their  both continue one is  both are open sets,  you

know you once you opened up the circle that is semi finite.

So,  it  gets  mapped  on  to  semi  infinite  line,  but  you  take  the  whole  line  to  have

universality you take the whole line, but once you opened the circle and make it into a

piece of the. So, what when can say is the real line is an infinite cover, in not just double

cover. The SU 2 was the double cover its only exactly twice has many point, there are 2 2

1 mapping.  For an interval  with goes to 0 to  2 pi there are infinite  number of such

intervals in R m in R. So, R forms a infinite cover.
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The covering space is R taken as the group, which simply integer which simply addition.

So, R provides any infinite cover. Countably infinite copies of the interval 0 to 2 pi in R.

But it is simply connected set R does not contain any unshrinkable loops, the reason you

can keep random walking on are as long as you like you never form close loop. So, so

much about the story of s. SO 3 and SO 2, and now we go to their representations which

actually already know because you have done quantum mechanics right. 

Now, to  find  a  representations,  there  is  the  standard  trick  we  use  the  algebra.  So,

remember we have and I  will  use the for the time being the J notation the complex

notation. Because both tau and l algebra falling the same class one can convert this into.

So, now, suppose we choose vectors space such the and we choose the eigen value of J 3

to be the basics. So, now you will ask me what is the dimensionality of this vector and

for the time being we will not declared what its dimensionalities ok.

And we will find out what the dimensionalities because the dimensionalities going to the

dimensionality of the representation. So, with dimension of the vector space to emerge

later therefore, we go to the abstract notation of quantum mechanics.
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Instead of writing J z V equal to m J z n times V that is eigen value equation, where we

had the indef I do not know how long how bigger column vector this is ok, but what I

will do is instead use the quantum mechanics notation, where we right a cat vector and

this causes are little  confusion,  but the point is the vector V we write as an angular

bracket like this and its label is exactly the same as the eigen value it has corresponding

to J z that is the notation.

And so, we are not going to write its components this is infect abstract notation of this

type,  but  here  the  vector  is  labeled  by  its  eigen  value  with  respect  to  J  z,  now we

construct J plus and J minus. So, have you seen this, this has be in done in we are classes

yeah. So, then become go little bit faster. So, then we learn that. So, who remembers this

J plus J minus is equal to what minus plus J z or plus minus J z. So, we have to work this

out. So, J x plus this is going to be equal to J x plus i J y comma J x minus i J y. So, J x J

x will commune. 

So, minus i times J x J y, the good thing about the commutater of the Poisson bracket

algebra is the linearity you can bring things out of it and the bracket of sum is sum of

brackets. So, that and then plus i times J y J x, but J x, J y is i J z times minus i becomes

1. So, I get 2 times J z, one from this and other from. J y J x will be equal to minus i time

J z. So, I get this. So, J J plus, J minus is equal to 2 times J z and J plus or minus or other



letters write it here as J z comma J plus or minus is J z comma J x plus or minus i J y that

is equal to that is going to J z, J x is minus i times J y and plus minus i times J z

I am sorry. So, Z x is just y plus y plus y and J z J y is going be minus i times J x. So,

what is this coming out to be now? So, we take out plus minus sign, there is this i of

course. So, it is plus minus i times, you can plus minus i times J z J y which is equal to

minus i J x there is another i over here. So, that makes this is the plus 1. So, if I take out

plus minus it becomes J x and because I take out plus minus I get minus plus i J y which

is equal to plus or minus J minus or plus we agree with this i times J y then plus minus

which was just the sign here.
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So, let me put plus minus I times J z J y is minus i jx. So, that is equal to i time J y and

minus I and this I unsigned I put together becomes plus 1; so, plus or minus J x. So, I

take out plus minus out J x and having taken plus minus out of this, I get minus plus i

times J y yeah yes, yes, yes, not minus plus good right thank you. So, it is just the same

way good.

So, we summarize this  by these two things  and then now trying to wonder if  I  was

supposed to put a square root 2, but square root 2 sir to remove these 2, but that 2 is not

going to if I put square root tools here then I remove this 2 from here and the rest of it

hide end up getting nothing else would change right. So, we have concluded that thus J

plus comma J minus equal to minus times J minus J plus is equal to 2 times J z and J z, J



plus minus is equal to plus minus J plus minus; we are sure of all this right yeah when I

take out plus minus sign that has to also be plus minus sign good.
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So, now, that statement is that consider the eigenvalue m of J z and act on it with J plus

what is this object. To find out what this object is I hit it with J z to find out what it is,

but this is same as J z, J plus plus, J plus J z and then add also minus J plus J z acting on

m. 

So,  that  is  same  as  commutator  J  z,  J  plus,  plus  J  plus  J  z  acting  on  m,  but  the

commutator J z J plus is J plus into bracket 1 plus J z on m right on this bracket has

become J plus, there was J plus on the left side of this which I can take out, but then one

plus J z heating m will return m plus 1 right.
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So, if I have any vector with eigen value m, then action of J plus increases the eigen

value by 1. Now, if you do this minus 1, then I will get J z on J J minus m will be equal

to the commutator of J z comma J minus J minus plus.
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So, the same logic repeats except that now, I have J minus J z acting on m, and J z J

minus is equal to minus J minus. So, that will return me m minus 1 times J minus 1 m.
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So, J plus and J minus are called raising and lowering operators. Now, the point is that

there existed highest value for this m ok. So, suppose there is. So, suppose there is a

highest value m by which we just mean. 

So, we call it L i e m take takes values m plus minus 1, m plus minus 2 we saw that this

is going to happen right when apply to this operators, but it is its biggest value is sum

value l. Then we find that to termit to have this happen, we should require that J plus on

this l should be equal to 0 you cannot rise on you further. 

That is the highest possible value you can have and if this is true then by applying J

minus to l enough times, we can also check that we get the spectrum of eigen values l

minus 1, l minus 2 separated by integers. Now, the point is that in this spectrum if any

number m is an eigen value then so, is minus m ok. To see this one other important point

is that.
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So, leave this further time being the other important point is that the operator or the what

is it called the algebra element J squared. This commutes with all the with J z and J plus

minus or with J x J y J z everything.

This is easy to see because you start  commuting for example,  if you take J x J x, J

squered the first time would give 0 anyway and would become equal to J x times J x

comma  J  y  squared  plus  J  x  comma  J  z  square,  but  remember  the  rules  of  this

commutator it means that I can take J y out, 1 J y out on this side and next time I can take

out a factor on the other side.
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You understand this right because this is this is two factors a and b, I can take out a on

this side and do this in the next step I take b out on that side, but here a and b are the

same.  But  have  to  remember  which  side  I  take  out  a  or  b,  but  this  is  a  very  very

important property of the bracket. So, and this should all add up 2 0 because J x, J y will

give i J z this will. So, it will give i times J y times J z and here plus J z times J y and

here we should get x z is equal to minus i.

So, I will put minus sign J z J y right J x J z is minus i jy. So, minus the is outside minus

sign and this J z times J y and from here again minus J y J z. So, it is all cancelling I

think yes. So, it is equal to 0. So, you can check that each of these gives 0. So, this

commutes with each of them by Schur’s lemma as and when this get represented by

matrices on any finite dimensional space, by Schur’s lemma this J squared must be just

proportional to a number times identity matrix because it commutes with all the elements

of this thus J squared is a number times identity of dimension.
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But now, we are trying to find out and also the value of J squered can be found by

writing it out as writing this as J x the J plus J minus plus J minus J plus this writing

these out as product of J plus J minus and using the algebra again ok. Now the main

thing I wanted to prove now was that, for every eigen value m there is also eigenvalue

minus m in the spectrum and if that is true. So, if this is if we once we prove this, it is

clear that in. So, spectrum of eigenvalues is L, L minus 1, L minus 2 etcetera and reaches

up to minus L.

But this also means automatically that L itself has to be integer, because you cannot have

integers space spectrum, which exactly becomes minus L in the end. Unless L itself is an

integer or a half integer, you can see this by say drawing the line and then say I have l

here and I have minus l here I have I can only go in unit steps. So, either I have to have 0

here or I have to as 0 exactly between these.

So, either I have to have 0 here I have a 1, 2, 3, 4, 5, 6, 7. So, I have 0 or I have the 0 in

the middle, but these are the only two possibilities there is no other possibility right. So, l

plus 3 by 2 and becomes plus l even minus l plus 3 by 2, but becomes l. So, these are the

only  2  possibilities  for  the  spectrum.  So,  we  need  to  just  check  the  m 2  minus  m

mapping,  moving  on  for  the  time  being  this  means  that  the  space  is  2  L  plus  1

dimensional the dimension that we are not specified so far.
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Now, we will see that if the algebra was really of the l of angular momentum, physically

SO 3 algebra cannot accept the half integer spectrum as eigen values. 

Because the corresponding representation matrices will be intrinsically complex and you

cannot have that in the in the real orthogonal group; Whereas, SU 2 admits both admits

all  the  vector  spaces  or  all  the  representations  each  is  of  course,  an  irreducible

representation, and in quantum mechanics because we believing complex vectors space,

spectra use for half integers spin particles.

So, the representation space of this can be entirely derived from the algebra alone. So,

we will we will see that the next thing I; two things I want to do is one is the Lawrence

group SO 3 1 and the other is  representation  on space of functions.  So,  in quantum

mechanics we know that; so, two topics for the next time.
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And to give you a preview it can be shown that, it is isomorphic to SU 2 process u 2 with

some  inverted  commas  ok.  Because  this  is  a  real  orthogonal  group  these  are  both

intrinsically complex groups. So, if you complex if I this algebra then you can actually

make it into this. So, if the Lawrence group can be made to look like it is to SU twos,

then its representations are also all done and the trick is very simple actually well so, will

come to it next time.

So,  that  is  one  thing  and the  other  thing  is  realizing  continuous  groups on function

spaces. So, we have for example, L z gets represented by minus i d by d pi and minus i d

by d pi on e raised to i m pi returns m as the eigen value. So, e raised to i m pi is a

function space realization of the abstract m we were writing, where we represent now the

L z operator as a differential operator. So, these are the two things will be continuing

with next time.


