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Generators, Discussion of Lie's theorems - I

So, we are in the second half of the course and where we are looking at  continuous

groups.
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And we began to look at the so, called classical groups. So, in continuous groups I can

write essentially matrix groups, sets of matrices with well-defined group properties. And,

then we are looking at classical groups and then we characterize the classical groups by

preservation of some metric.

Of course, so right so, if we go down the chain of preservation of some metric, then we

get the S O n groups; the real groups that preserve Pythagorean metric of n dimensions

or we can also get S O n comma m, where the Pythagorean metric has n number of plus

signs and m number of minus signs, in the metric and number of minus signs in the

metric.

So, from this point of view Lorentz group becomes S O 3, 1. And the rotation group is it

subgroup it is the first part S O 3 without fourth axis. So, it is just it properly contains S



O 3, which are rotations. We will see more about this, what we did next was to look at

the generators.

So, these are matrices in terms of which we can generate the group by exponentiation,

where the exponential is now a matrix function, but it is defined exactly the same way by

using the power series expansion. And we have not seen all of it so, this being this is sort

of being proved ok. We are gathering the evidence that this is possible to do. So, we

already saw that for S O 3 we had the generators.
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We saw that we have L Z equal to 0 0 minus 1 0 0 0 0 1 0 0 0 0 0 and similarly L into L y

there you can reme work them out and there was some philosophy about active rotations

and so on.

So, this just defines the convention in which we did it, because you can get the signs

opposite, but then you have to change signs everywhere and they may corresponding to

what you may call for passive counterclockwise or you may call them active clockwise

etcetera. 

Know that other thing which act is that so, we check that R Z theta was exponent of theta

times L Z and in general R n cap with an angle theta can be written as exponential of

theta times n cap dot L, where L is short form notation for the 3 matrices L x L y z we

write it as if it is a vector, but physicists will understand this notation right away.



Now, what we are doing next is that we are looking at  SU 2 ok. So, so, this all  we

worked out explicitly we took a z axis rotation and then we made an expansion and then

check the  these are  infinite  decimal  generator  we checked this.  And we can  see the

reasonableness of this we have not actually proved, but it can be proved and we saw that

need for baker Campbell.  So, this can be checked this is checked and need for baker

Campbell Housdorff identities in general.

So, we will see more about it a little bit later we what we do next is to look at the group

SU O and certainly  most  importantly  this  satisfy the algebra.  So,  the Antisymmetric

algebra of the L matrices, which is L i, L j equal to epsilon i j k L k, where i j k equal to 1

2 3 instead of writing x y z. Equivalently we can introduce J i J j equal to i epsilon i j k J

k  where  J  equal  to  i  times  or  J  k  equal  to  i  times  the  corresponding  L k.  So,  we

complexity  the  algebra,  but  then  the  j  become  Hermitian  generators.  So,  L  are

Antisymmetric J are Hermitian
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So, the fact that J is hermitian will make it is exponential unitary matrix. So, it will give a

unitary representation of S O 3.
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We come to SU 2. So, as you remember these are the matrices that preserves the metric

on the complex vector psi 1 star psi 2 psi 1 psi 2 star, this is the inner product on 2

dimensional complex complex vector space.

So, in any case the condition on the unitary matrices was that u dagger u has to equal 2

by 2 identity matrix, we want to characterize this matrix the same way we characterize

the rotation matrix. So, let. So, we want infinitesimal version. So, let u be equal to a b c d

this is the most unimaginative unimaginative, but effective way of working it out.

So, you can imagine what is u dagger u going to be when you start writing down, now

this has to be said equal to 1 identity matrix.
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So, it requires that so, we need and if we examine the off diagonal elements, then we see

that a star b plus c star d equal to 0, the other element is just the complex conjugate of

that.  So, there is if this number is 0 then it is complex conjugate will also be 0. So,

essentially we got that many conditions. In fact, for SU n we can do this calculation.

So, we can do accounting here we started with 4 complex numbers count independent

parameters, there are 4 into 2 to begin with, but minus 3 real conditions. The so, there are

also  because  the  generic  matrix  is  complex.  So,  they  appeared  like  there  are  6

independent conditions because there are 3 conditions on complex numbers, but we have

to restore it to the fact that the fact that it is unitary already reduce, it by 1 so, plus 1 ok.

So,  it  becomes  a  3  independent  matrices.  So,  the  reasoning  is  that  u  dagger  u  is  a

Hermitian matrix right. So, setting this equal to 1 in this case 2 by 2 basically gives 3

independent conditions, because 2 into 2 minus 1 sorry and any in 2 and minus 1 by 2

gives 3 independent conditions, that 2 elements on the diagonal and 1 off diagonal is 2

and this, but the conditions on the diagonal are automatically real ok.
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So, this gives n into n minus 1 by 2 into 2 plus n real conditions ok. So, suppose this is if

you take the case and this is general n by n then, because it is a Hermitian matrix the you

need to consider only the upper diagonal upper triangle then the diagonal.  The upper

triangle has n into n minus 1 by 2 entries because it starts with n minus 1 goes up to 1

right. So, it has n into n so, this is upper diagonal entries upper triangle I am sorry and

because of complex numbers there is vector 2, but the diagonal does not give complex

conditions because the matrix itself is Hermitian the diagonal gives only real conditions.

So, this is the diagonal ok. So, it gives this many conditions which is equal to n in 2 n

minus. So, n square 2 cancels so, n squared minus 1 plus n sorry n square minus n plus.

So, it gives n square conditions on in principle 2 into n square entries of u there is still

something I  have to count  we are starting with SU 2 right.  In fact,  let  us just  think

temporarily of SU n what does SU n mean I have some matrix u such that u dagger u has

to be equal to n by n size identity forget all the other things that we did just look at this

condition.

How many conditions are there in this? And the conditions are that this is a Hermitian

matrix and that you can see on the right hand side also it is identity matrix which is a

Hermitian  matrix.  If  it  is  Hermitian  matrix  it  is  contents  are  this  many of  diagonal

conditions n into n minus 2 in upper triangle by triangle times 2 because of complex

numbers. So, there is n minus and in 2 and minus 1 from the upper triangle.  On the

diagonal we have only n real conditions because automatically, because of hermiticity

they do not have any imaginary parts. And so, totally we have n square conditions here



this gives the this so, for gives conditions on U n. So, U n group characterized by n

square parameters.

Now, we knew that the determinant of this such a u matrix can be a phase. Further note

that u dagger u equal to det u dagger u det u this is general theorem of matrix algebra

determinant  of  product  is  product  of determinants.  So,  that  makes  it  into det  u  mod

square because determine u dagger is same as the determinant of u star is the same as star

of the det u. So, this becomes det u square.

So, if you said this equal to 1 so, impose that this is equal to 1, then; that means, that det

u is some phase.
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So, it reduces the degrees of freedom in determinant u from 2 to 1 to det u equal to mod

1 mod det u equal to 1 right it reduces to a single complex number. So, that 2 degrees of

freedom in the determinant has reduced to 1. So, there is a further reduction by 1 in the

degrees of freedom in a SU n free parameter not degrees of freedom, but free parameters.

So, in the case of SU 2 we expect 2 square minus 1 equal to 3 independent parameters 3

free parameters. So, I hope this logic is clear the logic is only arguing the algebraically

independent conditions that are being placed eventually the conditions wind up on the 2

n square entries  of the u itself  all  that the arguments all  are meant  for the quadratic

expression involving u dagger u, but that many algebraic conditions reduce the number



of free parameters in the original matrix u, leaving n square elements in SU n and n

square  minus  1  because  the  determinant  condition  does  not  put  two  independent

condition, but only 1 on the complex determinants ok.

So, we have this many parameters now we can go back to SU 2. So, we can look at it like

this there is the matrix a b c d, but we got the condition that a square plus c square

modulus squares have to be 1 and similarly b square plus b square modulus squares have

to be 1. So, we are immediately tempted to set a squared and a mod a and mod c to be

cos theta and sin theta some cosine and sine that is 1 way to think about it, this would be

some other angle say this is cosine phi 1 square this is cosine phi 2 square phi 1 square

phi 1 square and cosine phi 2 square sin phi 2 square. So, let me write it.

The required constraints suggest.
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That we can set mod a to be equal to and now I am using somebody’s parameterization

for it looks useful cos sin phi and c mod c equal to cosine phi we will see why this comes

out useful we will end up with Pauli matrices. So, this is why we are writing like this

now in principle I could have set b equal to some other angle psi, but the point is I also

have to have this orthogonality condition between the a and the b. 

So, that requires that this b has to be, but “orthogonal” to a and c. So, expect that b. So, it

is a star b. So, b we can set equal to minus cosine phi and d equal to equal to right sine



phi, c equal to minus cosine phi and b equal to plus cosine phi that much is ok. And then

there is an overall phase which so, we can now introduce phases; so, let me first rewrite

this. 

So, that you feel a little reassured that we have here essentially a and a star and b and

minus b star and we will further parameterize them by writing e raise to I theta times sin

phi, then e raised to I gamma times cos phi, then minus e raised to minus I gamma times

cos phi and e raised minus I theta minus sin phi.

So, one way to think about it is that this much could be reduced directly from the mod

square equals sum of mod square 1 conditions and the mutual orthogonality, that leads to

this condition. Because, if you look at this matrix now than it has automatically if you

mod a square plus mod b square and those relation are satisfied; Now, that this is still

complex, because all we did was fix the module i so, we got sine phi sine phi cos phi and

minus cos phi, but we are allow to we have some relative phases.

So, there are two independent  phase you are allowed again because of that  complex

arthagonality  condition you cannot  choose the this  completely arbitrarily. So,  we are

allowed these two phases theta and gamma ok. So, totally we got 3 angles phi which

characterized  the mod square condition  and then the 2 angles  theta  and gamma that

follow from trying to ensure this ok.

So, this is the way in which one can write out the SU 3 SU 2 matrix real we are doing

some rough work on the side, we are just trying to was guess is simply to put the module

of the size is of them to be sine and cosine and then we try to when the try to when the

try to do the orthogonality thing actually we come out with these conditions ok.

So, you can fool around with a bit and you will see that this is what it is should all I am

saying is if you look at this expressions, then you know that you have to put a relative

minus sine, then you get to you can put some phases you can now more systematically

you can start now with this. After having made a guess that we can put sines you can put

sign and cosine right because the mod square as to be 1.

Now, you also know that when you take cross product of the two you should get 0. So,

they should be flipped as minus sine and plus cosine or vice versa is just guess work and

then you say that I am still left with the phase, which is independent as far as a and c is



concerned a and c can have a independent phase, but because of the product b and a are

not allowed to have independent phase. 

So, that fixes the phases to be opposite this and this and this and this plus (Refer Time:

31:21). So, it is guess work as to what the form should be get this we can see that it

satisfies  the required  conditioned,  because mod a square plus  mod c square,  we can

quickly see now compare that.
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So, this originally was a b c d and with mod a square plus mod c square equal to 1, which

we can see is true right a and c mod a square plus mod c square mod b square plus mod b

d square is equal to 1 and then a star times b is e raise to minus i theta e raise to plus

gamma sine phi cos phi and then plus c star b, but c star still equal to minus sine plus e

raise plus gamma and the times cos phi and times d is e raised to minus i theta times sine

phi.

So, the phases came out now equal e raise to minus i theta plus i gamma, but there is a

minus i sine. So, this will cancel and will give 0. So, this parameterization parameterizes

the SU 2 matrices.


