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So, the simplest examples is we said dl squared equal to d r squared plus r square d theta

square plus r sin theta squared d phi squared. And we can write this out as d r d theta row

vector d phi, and then d r d theta d phi and 1 r squared and r squared sin squared theta.

So, this is our metric g Gaussian matrix g; which itself is a function of r theta phi in

principle, well it does not have phi in the present case, but it could be. So, this is why

you need this Gaussian trick of introducing more general kind of matrices as the matrix

is rather than just the Pythagorean one ok.

So, when we say that the inner product is left in variant by the O n groups we can think

of all the 3 different ways the most general abstract way with simple things in terms of

inner product, or we can think of the matrices specific matrices row and column matrices

and write O transpose O in matrix language and say it is identity, or we can think of it as

having a general Gaussian metric g even then we can essence the group we will get is the

same. Because it keeps the that matrix invariant, but they so I should correct myself.



So, the SO n group is specifically the one that keeps the for O n. So, I may as well draw

a line  here  and SO n is  to  use Pythagorean metric  just  call  it  delta  and say that  O

transpose delta O equal to delta that is what the that statement written in terms of indices

means is essentially that where we inside did not put delta.
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So, all this song and dance I did to tell you is that actually it is O transpose times the

metric O keeps the same metric, so that is the geometric meaning of the transformation.

But since we make the standard choice of the metric being delta it just looks like this, but

it keeps that matrix invariant. Now that allows us to say what happens in the Lorentz

transformation case.
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It allows us it meaning the Gaussian notation Gaussian version but still in it is simplest

form to introduce Minkowski metric which is 1 minus 1 minus 1 minus 1 0 0 0. So, I am

thinking of this eta is some kind of a g, but I still made it simple enough that there are

only 1’s and minus 1’s in it and there on the diagonal.

But there is a sign change unlike the Pythagorean one and then we say that Lorentz

transformations, or Lorentz group is the set of matrices such that lambda transpose eta

lambda  equal  to  eta.  The  lambda  matrices  of  constitute  the  Lorentz  group.  Index

notation; we say lambda mu nu I hope you like Greek letters mu rho lambda rho sigma

equal to eta nu sigma.

So, this is how you will often see it written, but the invariant kind of statement is this,

even that is not all that in why because we actually it is still  a matrix, here we have

written out all the indices.  So, this is how it  is usually written and the eta matrix  is

written with both indices down. This is the standard notation, people also introduce the I

mean more advanced things are possible with it, but for our purpose this is what the

group is going to be. This group because of the one sign opposite to the other 3 signs is

called  SO  3  1,  special  orthogonal  group  of  and  so  after  imposing  also  impose

determinant lambda equal to 1.

So,  this  leaves  out  space in  versions  and operations  like  that  which have a  negative

determinant mirror reflection things like that, also impose determinant lambda equal to 1;



this is called SO 3. 1; special orthogonal group with 3 positive signs, and 1 negative sign

or 3 negative and 1 positive it does not matter, so it just called S O 3, 1 ok. So, next we

do a little bit of abstract stuff again and then come back to this, or I should introduce one

more group before we go on yes.
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So,  while  we are  introducing  groups let  us  do two things  more,  unitary  groups  and

symplectic groups, U n, and S U n, there actually C but the C is hidden because unitary

generally  means  permission  U dagger  U equal,  it  is  unitarity  is  already on complex

matrices. So, nobody write C for them, but they are complex groups.

So, they act on a vector space that allows scalar multiplication by complexes and here we

need to introduce the inner product for complex vector space which is which has the

property that x y is equal to y x star. So, we need to do this to keep things meaningful

because, so this ensures actually the positive definiteness.

So, for example, if I have a vector Z which is a Z 1, Z 2, Z 3, then Z Z will be equal to Z

1 star; so, it will be mod Z 1 squared plus mod Z 2 square plus mod Z 3 square right.

Because this star effectively means that you have to construct the inner product Z W to

be equal to Z 1 star W 1, plus Z 2 star W 2 plus Z 3 start W 3, and it ensures the positive

definiteness. 



Also we have that x comma ay is equal to a times x comma y, but a x times y is equal to

a star comma x, y. So, your scalar so a belongs to complex numbers, the scalar by which

you multiply your vector scaled your vector if it is whether it is multiplying the second

entry or the first entry of the inner product matters.

Later on in quantum mechanics beginner defines anti linear transformations where it is

the opposite it when it is taken out of the front factor it is complex if I done not if it is, so

that requires with some very special thing that is required for time reversal operations,

but  this  is  good enough for the time being.  So, these are the properties  of the inner

product. So, these are salient features and then it is easy to define what is unitary and

what is not.
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I mean what is unitary and what is special unitary simply says that in matrix notation is

simply  U  dagger  U  equal  to  1  identity  matrix,  and  special  unitary  additionally

determinant U equal to 1. So, here note U dagger U equal to 1 implies that determinant

of U dagger U which by theorem of determinants is same as determinant of U dagger

times determinant of U becomes star of determinant U.

Because when your dagger you transpose and your complex conjugate, but transposition

does not change the determinant, but that starring will remain. So, the determinant will

basically be the star of the determinant U and therefore, you get mod det U mod square;



this equal to determinant of the right hand side which is just 1. So, this implies 1 equal to

det U square. So, det U is in general e raise to i theta with some real theta.

The special unitary requirement sets theta equal to 0, it has to be 1 only. In the real case it

could be plus 1 or minus 1. The orthogonal groups without the S condition is plus or

minus 1, the complex groups without the condition can be a whole continuous continuum

of possibilities the whole circle. So, this brings us to a very broad distinction between

various kinds of groups.
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So,  we now get  to  some topology, we will  introduce  the  idea  of  connectedness  and

simply connectedness; I still did not introduce the symplectic group we will do it at some

point ok. So, connectedness we simply say that so very simply speaking let me just draw

some pictures first. Connected simply means that any two points within the set can be

joined by a series of by a curve which lies entirely within the set that is all it means or

actually two elements, but we are already thinking geometrically.

So, two points in the set can be joined by a curve lying in the set. So, if I draw this disk

and I  draw 2 disks;  the  disk is  a  connected  set  because  I  can always draw a curve

connecting 1 and 2, but here if 1 is here and 2 is here; then I cannot connect them, so this

is connected, this is disconnected ok.



So, this is the very basic intuitive idea and the to formalize we say that given elements g

1 and g 2 there exists a path parameterized by some parameter t. So, let us be specific to

matrix groups given, matrices g 1 and g 2 if there is a path by a which we actually mean

a continuous mapping of the interval 0 1 into g; g of t with t belonging to the closed

interval 0 to 1, that is the meaning of this word path.
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The word path means this map for from 0 1, I have created a map into the group such

that at 0 it becomes g 1 and at 1 at becomes g 2 such that g of 0 is equal to g 1, and g of 1

is equal to g 2. So, this of course, as to be the if you write out the matrix as an array then

this has to be true for every single entry, entry by entry you should be starting with this

entry in this matrix and ending with entry in that matrix.

So,  in  component  notation  every  entry  of  the  two  of  the  two  matrices  can  be

correspondingly connected I am just keeping it short. Now this immediately I mean so

far we are just talking some topology, but we see immediately the application that if you

take  the  GL groups,  then  the  GL n  R  groups  are  not  connected  as  matrices  which

determinant either greater than 0 or less than 0 right. Because we excluded determinant

equal to 0, because determinant equal to 0 will not allow inversion, so there will be no

inverse existing and it will not have a group structure.

So, the fact that it has group structure means that you are excluded 0, but; that means,

that because the determinant is just lying on the real line and you have excluded 0. So,



these are plus side and minus side and 0 is excluded. So, there is no way of going from

one side to the other continuously.

So, all the matrices lying on the left side are connected to each other and all the matrices

on this side are connected to each other, but not continuous, but not to each other. Thus

determinant less than 0 are all from one connected set, one connected subset, while det

greater than 0 form another connected subset, but the two subsets are not connected. I

should have said plus and minus to each other rather elements of plus and minus subsets

ok. So, the G L n R is a not connected set which side with will you like to be on they are

both equivalent right they are both mirror images of each other, but which of these will

form a subgroup. So, the one on the which contains the plus will be the subgroup.
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So, if sets are called G L n R minus and G L n R plus respectively, we see G L n R plus

forms a sub group, but not G L n R minus although they are isomorphic to each other.

But the other one will have a negative of the identity which we do not accept the identity.

So but now let us look at the G L n C the story is different. What happens here? The

determinant is a complex number.

So, the determinant values lie in the complex plane with 0 excluded. I think sometimes

mathematicians write something like this, C with 0 excluded only one point excluded;

see how much excitement can be heard by removing just one point out of the plane,



remember the point has not even any area. So, if you exclude 0, then you can make it

into a group and therefore, the determinant values lie, all over the complex plane.

Now this set is all connected because you are allowed it is not that line, when you have a

line; and you remove a point it becomes two disconnected pieces, but the plane with one

point removed does not become disconnected. So, here say here so here all points which

are actually matrices can always be connected since we are physicist we will not ask for

a proof for it  right.  In complex plane you can connect  and it  fit  to anything,  but  in

mathematics  you have to prove it  ok. So, G L n C is not connected,  it  is connected

whereas that one the G L n R are not connected.

But  there  is  the  next  distinction  simply  connected  versus  connected.  So,  simply

connected means that if you draw any circle in the set and you can shrink the circle to 0

such sets are called simply connected. So, the simple thing to say is that if you take the

corridor outside and the classroom together as one set then it is not simply connected.

Because you can get out of this door and enter through this door and that circle cannot be

shrunk to a point you cannot continuously shrink. If you are only inside the classroom

you take any circular trajectory you can always make it shrink to 0, but if you include the

outside corridor not a larger thing we do not know, but if you take the outside only the

outside part, you can enter through one side and leave through I mean leave through one

side and re enter through the other then you get a non simply connected trajectory.

So, we will see in that the G L n C although they are connected they are not simply

connected because that point 0 has been removed. So, there will like the so there will

exists two classes of curves. A class of curve which does not go around the point 0, those

curves can also be shrunk to a point and the class of curve that go around 0 and then

cannot be shrunk to a point.

These things this kind of thinking developed only around 1900s and later it is it is called

topology, it one of the pioneers was (Refer Time: 30:35) and he was also thinking of

trajectories in the phase space and the various categories of trajectories that can happen

and so on. So, some of the classical generalities of classical dynamics were also couched

in this language.
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So, yeah so this started with those kinds of reasoning and it is today part of topology. So,

the idea of simply connected is that given a close curve lying in the set, whether there

exists a sequence of close curves which converts the or deforms the original one to a

point and there is some formal way of saying all this which is right.

So, simplest way of thinking about it is to I will not write out everything because it just is

a bit lengthy and not so illuminating. Suppose we draw two such things two curves and

put a parameter t 1 on S 1 on this and put parameter S 2 on this. So, both S 1 and S 2 go

from 0 to 1; that makes each of them a circle, but now we also introduce a parameter t at

which we construct intermediate circles.

So, if there is a path which we saw earlier what we did not right it out; we yeah we wrote

we wrote this g of t yes, so for matrices we wrote we wrote g of t.  So, now we say

similarly if there is g of S and t such that g of S comma 0 which of course, t belonging to

again 0 to 1 such that t of g of S comma 0 becomes equal to g 1.

Now, I have to put 1 somewhere else g 1 of S and g of S comma 1 becomes equal to g 2

of S. So, I call this curve g 1 the inner one should be g 1 and the outer one is g 2. So, I

have a curve g upper index 1, and it is put in bracket because it is not really important as

a number it just a label whereas these are important as numbers. So, this is as labeling

one possible curve whose parameter is S 1, so g becomes equal to you can I do not want

to model this up. But there is a more general map with two parameters S and t with t



running 0 to 1, S running also 0 to 1; said that if I ran over all the parameter values I will

be covering this whole annular region ok. Now these two are said to be deformable to

each other.
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And then we say that a set is simply connected provided or deformable into each other. A

set is simply connected provided every single every possible closed curve in it can be

deformed to the trivial close curve to a point, some fixed point given point some p 0

given point; for all values of the parameter it is just the same point. So, if every single,

this every possible is a important thing; every possible closed curve in the set should be

reducible to a point then it is called a simply connected set. And if it is not then it is not

simply connected.

In fact, in topologies somewhere interesting things are done based on this, which is that

when you do not know too much about a space or do not want to become too specific.

So,  topology  studies  point  sets  in  their  most  generality  without  imposing  too  much

structure  like  length,  and  angles,  and  anything.  So,  if  you  just  want  to  know  the

properties of a set you like casting a net, you throw all possible circles you can throw

into it and check how many of them can be shrunk and then there can be non shrinkable

once, but independent non shrinkable once.

So, if you take the surface of a torus then you can of course, draw little curves on it

which can all be shrunk to a point or I mean you can draw even a big one, but such that it



is shrinks, but you can make a one that goes around one of the circumferences which

cannot be shrunk, because it is stuck like this, but you can also draw a circle that runs

like this and that also cannot shrink because it is stuck around this circle.

So, there are two in-equivalent circles which cannot be shrunk to a point. By studying all

the possible circles that cannot be shrunk to points or cannot be deformed into each other

you can classify the space. So, this is called and actually the beautiful thing about it is it

actually form has a group structure of it is own. So, it is called homotopy group and that

captures the, it is called the fundamental group of the set. So, maybe later on we will

come to fundamental group.
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Generalization or homotopy group H 1 which should suggest to you that you can also

define H 2, H 3. You can classify a n dimensional space by casting spheres S thus you

know spheres of size n dimension n into it and see whether they can be shrunk or not. So,

that essentially captures the topological the connectivity aspects of n dimensional spaces

even when you do not care about anything else ok.

So, for the time being that is so we saw that so did we assert that therefore, the G L n C is

not simply connected ok. The next thing I will do is what I missed in the middle which

was introducing the symplectic groups; classical not a classical groups part of this is the

case when the metric is a funny one it is not diagonalizable, but it is Skew symmetric

metric. 



And now this metric is actually very doubtful, do you really want to call it a metric.

Because when it a skew symmetric it means that x axis 0, it is it has the property that x y

is equal to minus y x. So, it has no magnitude notion in it actually because x will always

be 0. So, it is not called a not considered an inner product, it does not qualify to being

called an inner product, but it is still a metric in some general sense it is a bilinear form.

So,  this  is  an anti  symmetric  bilinear  form the ones  that  classifies  inner  product  are

symmetric bilinear forms and this is an anti symmetric bilinear form.

So, what happens in this case is that so typically the metric in this case we call epsilon it

has 2 by 2 blocks; n such blocks, but each block is 2 by 2 and unit it reads 1 and minus 1

and everything else zeros.
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This is one version of writing. There are other versions where people will would plus I

mean put entirely along this of main of diagonals minus 1’s and plus 1’s, you can recast

it,  so  that  it  goes  all  along  this  way. But  this  is  a  most  convenient  one  because  it

remembers which element is related to which so ok. So, this is what the metric looks like

and this is what it is left invariant by the elements of this group. So suppose so in what

did we call, algebraic or index notation? What is the time? Ok.

Let the vectors be carrier space have components xi a with a equal to 1 up to 2 n, we

need even number because we have to you know make it anti symmetric in each block.

Then what we need is the and suppose we let xi a prime be equal to some transformation



matrix beta a b xi b sum over b up to 2 n. And what we need is that we are given xi a, xi

b; the yeah this inner product is equal to epsilon a b and need xi prime c, xi prime d also

equal to epsilon c d. So, what this does is that so the point is that these betas I can pull

out of this.
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And what I will find is that beta I will see it by looking in my notes, because time is a

little short.  So beta a b epsilon b c and beta d c equal to epsilon a d; so this is the

requirement that the beta matrices have to satisfy, so beta matrix is satisfying this are

called S p 2 n Sp twice and S, and with real and it is called symplectic group. And by

default dimensions are even number, so we will stop here today. So, we will see that the

Sp 2 n groups are groups of invariance of canonical transformations.


