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So,  when  we  get  to  matrix  groups,  the  statement  was  that  we  need  matrixes  of

determinant not equal to 0 because that is the main point. Everything else is. So, very

sorry determinant not equal to 0, that is what we need and so, the overarching groups

biggest matrix groups are called G, L, n, R and G L, n, C; where the G does says general,

that is s general as it can get subject to only this condition determinant not equal to 0.

And L does means linear, n is the size of the matrixes n by n and R means it is over reals.

So, it is a over a real vectors space or we can for this say real entries and here it is

complex number entries in the matrix.

Now, these groups they have a natural carriers space on which they act is essentially n

dimensional real or complex column vectors, that is the convection we could have taken

them to the row vectors, but column is the convection and then the row vectors are called

the  dual  that  the  row  vectors  are  called  as  space  dual  to  these.  I  did  not  use  this

terminology so far, but and maybe we do not it. So, do not worry, but the row vectors are

not the primary space it is kind of a mirror image space of the column vectors. 



So, this is the basic layout and that is where one begins, and what one shows. So, what

one shows is that there are a variety of subgroups of the general linear group, which are

of physical interest. So, SO n, SU n etcetera and also what are call symplectic groups S p

2 n. So, these are all various groups motive met they are all  matrix groups, they are

motivated by various physical consideration and they are subgroups of the big matrix

groups G, L, n, R and G L, n, C on whom the only restriction is determinant not equal to

0.

So in fact,  we next go to one class of groups which are not very commonly used in

physics, but they at least one of them is used and it is not any of the once I listed that is

call the special linear groups.
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The only restriction these put on the G L, n, R and G L, n, C is that the value of the

determinant is plus 1 ok. So, here the requirement is determinant equal to 1 restriction on

corresponding G L. So, earlier the determinant only was non zero, but it could be any

finite value, for any value in the complex to n O d l numbers, but now further we also

require it could be determinant equal to plus 1.

So, we will see that sometimes these groups are also interesting to consider and in fact,

they are very useful even for the Lorentz group. Next to talk about these groups SO n,

SU n, S p 2 n it is useful to introduce the idea of inner product. We introduce classical

groups, notion of inner product on the carrier space, which are some V real or complex.



Actually it is works knowing a particular extract mathematics fact that, we tend to think

of the vectors space as real or complex by saying its components are real or complex. 

But in general a vector is by itself not a number. So, the components is only a language

in terms of which we think. So, in the abstract language, a vector space becomes real or

complex depending on whether the scalar multiplication is by reals or complex. So, note

that  vector  space  has  2  algebraic  structures,  a  plus  for  the  vectors  and  a  scalar

multiplication or multiplication by scalars not correctly let us write that to (Refer Time:

08:55) some, which is distributive over that plus. So, we have the property that which we

have a times.
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V 1 plus V 2 it becomes equal to a V 1 plus a V 2; it is also true that a plus b V is equal to

a V plus b V. So, the scalar multiplication by scalar satisfies its quantity, these properties

some sometimes in mathematics they generalize this set of scalars.

So, scalars are typically either reals or complex. Now the main thing that I was earlier

saying a vector space is called real or complex depending on whether the scalars are real

or complex. What this means is, you can have a vector space of dimension n at this point

I  will  tell  you nothing about whether  it  is  multipliable  by re[al]-  scalars  or complex

numbers.



Then there it is just means that it has n basis vectors or vector space V is characterized by

the fact that it admits n basis vectors at this point this basis vectors I mean either real or

complex such as basis ; however, if I now say that the vector space is real then. So, if the

scalars are in r then components of vectors relative to this basis are real that is what this

means the components become real because you said the scalar multiplication is by reals.

The same n dimensional vectors space, if it is now if I allow complex scalars then its

scalars are complex then components become complex.
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 But what this boils down to in practice is that secretly it becomes a 2 n dimensional real

vector  space  because  the  complex  numbers  you  can  read  all  the  real  multiplication

separately and all the imaginary part multiplication separately.

Thus say n dimensional complex vector space in component notation is almost a 2 n

dimensional real vector space. So, we just keep this in mind, but remember that it is not

that  the  basis  we can  complex  because  vector  space  is  a  vector  space,  it  is  neither

belonging to real numbers or complex it is the scalar multiplication that makes it real or

complex.

Now, we come to our inner product idea and we discussed it already last time, it has

those three properties of symmetric bilinear and positive definite. Symmetric bilinear and



positive definite and we have to add the rider that when we come to special relativity the

Minkowski metric does not have the third property.

In fact, so, I remember positive definite means that x, x the inner product of x which

itself equal to 0 only if x its itself 0 vector. So, always emphasize this, this 0 is 0 vector

this 0 is the number zero, but nobody bothers distinguishing them, but you should know

that the different. So, the positive definiteness idea is that it becomes 0 only if x itself is

0, but in Minkowski space the direction of propagation of light or the energy momentum

carried by light is a 0 magnitude Minkowski magnitude vector the 4 vector of photons of

massless particles has 0 magnitude, but is non zero.

So, we will remember that distinction and carry it on later, I now wanted to go back to

that 2 things that we wrote one is algebraic form and one is geometric way of thinking.
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So, we introduced O n is basically one that preserves the inner product, which in matrix

languages x transpose, O transpose, O y is same as x transpose x x transpose y this

requires  that  O transpose O equal  to identity  matrix  of size n by n and then S O n

additionally as determinant equal to 1. So, we check last time that since O transpose O is

equal to 1 the determinant has to be plus or minus 1.

So, if you restrict yourself to then you. So, reject determinant equal to minus 1 members

of elements O of O O n. There is a there are 2 other ways of writing this out which is one



is a geometric way of thinking and the other is algebraic detailed way of writing. So, the

algebraic or index notation we write O i j O. So, I have to write O transpose sorry; now I

have to really be careful what will do is write O transpose i j and then I have to multiply

O j k that is matrix multiplication, but that actually same as O and then we will put j here

and i here O j k equal to. So, this is the transpose of that, but I remember that this index

is up and this is down this is what slight complication is there because of the way we are

dealing with this and this notation is useful when we go to the Minkowski space.

So, I will just define it like this and so, this should be equal to the identity matrix which

now becomes delta i k for identity it actually does not matter where i n k go, but. So, this

is a index notation for stating the same thing and then there is a geometric interpretation.

So, we earlier defined inner product essentially algebraically although we did not write

an indices, we just gave the algebraic properties which should be symmetric by linear

positive definite if the geometric way of thinking about it is that I actually I am defining

a distance a metric on the career space, and introduce a metric a special metric matrix I

am sorry to say this, but that is what it is. So, the metric is the abstract motion and matrix

is of course, one of the arrays array matrices.

So, I introduce a special matrix, which is let us call it g in one or 2 gauss and because it

is become standard notation.
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So, introduce special matrix g and let us call it g i j such that such that it is symmetric

then g i j, v i w j with summation over i j is a general bilinear form is called this is the

one of the old nomenclatures. So, it is called general bilinear form which is symmetric

and we also required that determinant of g is not zero. So, that it does not have some null

row vector.

So, such a g i j is called a metric in Gaussian and its geometric interpretation is that it

actually kind of stretches and strains the vectors. So, the let me write one more thing the

choice g i j equal to delta ij is called Pythagorean and is the simplest. In fact, a g as

introduced is a symmetric matrix, a symmetric matrix can always be diagonalized and a

symmetric matrix by transferring its diagonal whatever scales that whatever eigenvalues

there are you rescale the basis vectors with inverse of square roots of those, you can

make the matrix completely identity matrix. So, by g is symmetric real matrix, we can

always diagonalize it also rescale the basis to convert it to Pythagorean.

So, in a sense the information content in both is quite similar or can be shifted back and

forth between the choice of your basis and the choice of coefficients in g, where it comes

useful  is  where  such  a  metric  changes  from one  point  in  space  to  another.  So,  for

example, if you use space spherical polar coordinates, then the metric is r square sorry 1

then  r  square  and  r  sin  theta  squared  whole  squared.  So,  if  as  a  function  of  the

coordinates the metric keeps changing then this comes in useful.
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Thus, is either in g or in scaling and orientation of the basis.

So, now I have already made you accept what is geometric about it. It is actually just

stretching and the angles between the basis vectors, relative scaling and angles between

basis vectors. So, you might say what is the advantage then always use Pythagorean, but

the answer is that when g is defined on a space parameterized by some parameters that is

a repetition, but anyway say u 1, u 2, u 3 then reduction to Pythagorean may not be

globally  possible  not  possible  as  a  continuous  operation;  if  you  want  to  do  it  as  a

continuous function. So, the Pythagorean version reduction to Pythagorean version is not

possible globally as a smooth operation smooth or continuous operation.

So,  our  simplest  example  is  the  curvilinear  coordinates  we  use,  but  the  curvilinear

coordinates used in most physics problems like electromagnetism and so on are still such

that the local frames are orthonormal, r theta phi also the r cap vector theta cap vector phi

cap vector are mutually orthogonal that much we retain for simplicity, but when you get

into  more  complicated  spaces  you may  be  forced  to  choose  even more  complicated

matrix.


