
Theory of Group for Physics Applications
Prof. Urjit A. Yajnik

Department of Physics
Indian Institute of Technology, Bombay

Lecture - 28
Classical Groups - II

Now, we have to be a little careful with the inner product.
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So, properties of inner product we have to say x y equal to y x star this is partly impose,

so that the positive definite word ness; ness words ok. So, if you have x x it will be it is

own complex  conjugate.  So,  it  will  remain  positive  and so  on.  The second thing  is

therefore that if I put a x plus b y comma w, it will come out a star x comma w plus b star

y comma w. So, in the second slot it will the property will look exactly like this, actually

the property is exactly same.
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But be if you put it in the second slot, but because when you flip it you get a star that

means, if you had done it in the first lot then you are to start the coefficients when you

pull them out and of course the third property remains the same.
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And the good news is that, the Hilbert space of quantum mechanics obeys all of this. If

you want to know why it is called Hilbert space after it some complex linear space right,

you have to read the notes. It has to do with the infinite dimensionality and the fact that

you eventually you have to use the continuum. To define to define plane waves you have



to define e raise to I k dot x, where you label the k is the parameter is the wave number,

but k takes all the possible continuous values. So, to allow representing a free particle

you have  to  include  all  those  kind  of  basis  states  as  possible  vectors  and  there  are

carnalities that arise because, of that the same as the problem of Fourier series versus

Fourier transform.

The Fourier transformer is the more complicated thing, then Fourier series, but you need

not worry about it right now if you want to read there are discussion, so why it is called

Hilbert space. But it is essentially a complex vector space with a continuum number of

dimension, continuum number of vectors in it, the dimensionality maybe finite, but in the

sense that it may be in x only 1 dim one dimensional two dimensional and so on.

But it is an infinite dimensional vector space as a vector space can be more complicated

things happen, when you go to quantized fields like in condense matter physics and so

on. There you have to consider in fact higher orders of infinities. Now coming back to

this, we will come back to our classical groups and we define orthogonal sets orthogonal

group I wrote that 2 soon, there is O n and there is S O n and this is what I will discuss

now.

So, essentially what we say is the matrix matrice is O, such that O x comma O y remain

same as x comma y the inner product is preserved by multiplication of all vectors by O,

the inner product is preserved. So, preserves this i p or we call it the invariance group. In

matrix notation we would have the inner product has to be written as x transpose y.

We said that our matrix are matrix our career space are column vectors right. So, the

usual way of writing out the inner product is to take x transpose y, and then we can see

what we need is x transpose O transpose, because transpose of I should have written that

first ok, but you know your grown up people.

So, so therefore the property required is O transpose O equal to identity matrix. So, that

is the defining property of orthogonal group and this group is called O n. The set of all

such matrices; so obviously a subgroup of the G L n R because, when you take a general

linear  matrix,  which has an inverse,  but then restricted to satisfy this  O transpose O

condition, it is a subgroup of the G L n R and then in physics we have to worry about one

more thing.  This O transpose O can also have matrices that will  flip the axis mirror

reflect that axis. So, first we write out so for the specialization.
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Note O transpose O equal to identity, implies that determinant of O squared equal to 1

right because, determinant of O transpose O there is a theorem of matrix algebra, that

this  says  that  this  is  same  as  that  O  transpose  times  that  O  and  determinant  of  O

transpose is same as determinant of O right.

Determinant of a b is same as the determinant of product is product of the determinates

and further, the trans determinant of transpose remains the same as the determinant of the

original matrix. So, det O transpose O is same as that O squared and on the right hand

side determinant of identity matrix is 1. So, we will get that O squared equal to 1, this

means that O can be plus or minus 1.

Now, if we take S O 3 S O 3 so sorry, so if we take O 3 matrix 1 1 minus 1 also belongs

to it.  But this  is not a proper rotation you have to flip the z axis,  so this  cannot be

obtained by rotations that can be continuously reduced to identity ok. You cannot get this

by any rotation of the xyz axis that can slowly be transform back to identity.

So, this involves mirror reflection in x y plane and cannot be obtained by rotation. In

other words it cannot be obtained as a continuous variation of the identity matrix. So,

sometimes we call this improper rotation, is not a it is like a rotation, but not actually a

rotation. So, we call it in proper rotation is it safe to write here ok. To avoid, if you want

to  avoid  improper  rotation  sometimes  you  want  to  include  mirror  reflections  not  a



problem. But if you want to avoid mirror reflections, then you call it then you put a refer

the restrictions, the determinant there should be plus 1.
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Now, you can see that this det O equal to plus 1 will be a subgroup of the O n. So, this is

called S O n, next let us look at the complex groups. So, we have stopped writing in for g

l  we said comma r comma c here we do not  because,  by context  it  is  always clear

orthogonal  groups are  real  groups and the  unitary  groups are  automatically  complex

groups. So, here we it is a similar thing, it is leaving the complex inner product invariant.

Again in matrix notation we need x dagger U dagger U y equal to x dagger y because,

the inner product in the matrix case will be equal to x dagger y. So, this means that U

dagger  U  equal  to  1,  identity  matrix  what  this  means  in  the  complex  case  on  the

determinant, you will get complex conjugate of the determinant.
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So, this is modulus of mod that U mod square and this is set equal to 1. So, this means

that determinant U is some e raise to i theta, it is the phase so it mod square should come

at 1. So, this is a much bigger ambiguity than in the orthogonal case where you just got

plus  or  minus  1,  but  here  the  determinant  can  lie  on  the  unit  circle  to  restrict  this

demanded determinant U equal to 1 i e theta necessarily equal to 0.

This is then calls special unitary group, in quantum mechanics we actually have this the

only thing that we need for norm of wave function to remain the same is that they have

to be unitary. So, in quantum mechanics ok, so we have to backtrack a little bit, what is

the significance of this G L n R are in geometric sense or specifically of. Let us say the S

O n and U n O n, S O n, U n sun what do these things do, what they really do is carry out

a change of basis. So, we said that the mattresses act on various vectors x goes to O x, x

goes to U x, think now x to be 1 of the basis vectors one of the unit vectors.

Then all that we are saying is that we have rotated all the unit vectors the same way by

this transformation U. So, it amounts to just change of basis, it is the this operation. In

fact, the even the general linear transformation it is essentially a change of basis, but it

also allow stretching the basis it does not leave the magnitude 1. Whereas, the orthogonal

so we can write this down I want to do 2 things before we close one is this and the other

is the slightly algebraic notation. So, maybe we do the algebraic notation first and then

we come to this.
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Algebraic version of preservation of metric of the inner product I am sorry. Note that for

equal to x transpose y is same as x transpose identity times y, this is what it actually

means. We want to think of the inner product a little bit more generally the inner product

is actually a matrix by itself.

This is the Pythagorean choice well and if it is uni Cartesian, we can more generally

define any. So, a generalization due to gauss any matrix g, such that x y defined by x

transpose g y you insert this matrix g. But it should obey all the i p requirement that is all

you do not say it is identity matrix you can put any matrix that you like so typical it will

turn out it has to be a symmetric matrix that is all.

So, typically all symmetric matrices, so this is the generalization due to gauss and he

calls it the metric tensor, the white is tensor and all is a different story. But what we want

to point out  is  that  in fact,  the inner  product all  it  needs is  some matrix  g which is

symmetric and which will say which is such that x transpose g x will remain positive

definite.

So, those requirements is all it means typically all symmetric matrices we will satisfy this

and if you want ultimately you can make them determinant one symmetric matrices. So,

you we can now think of this as preserving the Pythagorean metric 1. So, this can also be

written  as  O  transpose  O  equal  to  1,  can  also  be  written  as  O  transpose  g  O  in

Pythagorean notation or in Pythagorean choice it becomes O transpose O equal to 1. So,



equal to g that is what it actually saying and in Pythagorean notation it becomes this, so

it preserves the metric delta ij. So, we would have written O ji delta ij O, so sorry ik so j j

has to try to this so k j O k L right.

I wrote so I meant to write the transpose of O ij so it is O j i, but it is the this index which

was actually here tried to this. So, j tries so it should be j k I am sorry j k jk jk O k L

equal to delta I l. So, that is another way of thinking about what the O matrices have to

do.

And similarly we can write out for the complex matrices. So, the with once we write like

this, we can write out the Murkowski case.
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The metric is denoted eta and is equal to 1 minus 1 minus 1 minus 1, this  has now

become the standard choice in advanced physics. So, in the old days they were taking

minus 1 here and taking plus 1 0, because it will written the usual Pythagorean think for

the 3D. But overtime this has become preferred 1, so this is preferred because the energy

momentum energy will have a positive sign because, this is the 0 th component that is

the  difference.  But  this  has  become  the  standard  choice  and  in  this  case,  so  this

generalizes the Gaussian restriction of positive definiteness, but now it is indefinite that

is the only difference and then the requirement is.



So,  this  is  another  way of writing out  the Murkowski  inner  product,  this  group you

should check here some notation here because, so the placement of indices is somewhat

important I will correct it next time. But this group we call S O 3 from comma 1, this

means 3 of the signs in the metric preserved by this group are opposite to the fourth sign.

So, there is the old theorem call Sylvester’s theorem, which says that the number of signs

of the Eigen values remain the same and the transformations.  So, regardless of what

basis  you choose you will  have 3 of the Eigen values negative and one Eigen value

positive and or 3 positive and 1 negative one negative either way is fine, but they are

opposite that is all it says.

So, multiplying the eta overall by 1 sign does not change this relation and there were

many versions in operation people actually at one point used to write I the imaginary unit

and plus 1 plus 1 plus 1 plus 1 plus 1 plus 1. So, that it gives the usual length squared and

that I save you the embarrassment of admitting that there is a minus sign that actually it

is indefinite.

So, it looks like Pythagorean but eventually people stop being afraid of minus sign and

started writing the minus sign explicitly in the metric. So, in fact Pauli has an article

written in 1920 where he introduce the I ct notation to avoid writing and minus sign. But

eventually people realize that actually the structure of the group changes because, of the

1 sign opposite the representation theory changes.

So, I think we will stop here what was I going to say it was about some geometric thing

right. So we will do it next time.


