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So, today we are going to continue with the Continuous Group and I put up some notes.

So, the things we wish to now talk about are continuous groups.
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So, last time we talk about continuum groups last time we began with discussing about

what is the continuum. So, we need a set and we need to understand what is meant by a

continuous set; very roughly speaking any set parameterized, parameterized and this is of

course,  a  special  word  by  a  set  of  real  parameters.  We will  temporally  call  them

something x 1 x 2 x n we are just using the Cartesian notation.

In other words a set that is that has 1 to 1 correspondence with R n. So, last time what we

try to do was actually discuss in what sense very sorry in what sense the real line itself is

a continuum. So, fundamentally if you accept that the real numbers form a continuum

everything else that you can put into 1 to 1 correspondence with it is a continuum, but

why R itself forms a continuum has had a very difficult intellectual history.



Now, we take it all for granted, but it is a important history. So, by why we mean in what

sense  mathematical  thought.  So,  it  is  not  philosophy  as  in  philosophy,  but  actually

mathematics. So, this we went over last time essentially saying there is a progression

from fractions which do form a set such which looks like you can always find a new

fraction  between two existing  fraction,  between two integers  you cannot  find a  new

integer always that is the only and next integer or a previous integer.

But given two fractions and just focus between 0 and 1 even the fractions between 0 and

1 have the property that between any two of them there is a new one ok. So, you because

you can take sum of the two and divided by 2; so, you get one that is in between despite

the fact that there are therefore, an infinite number of them. They turn out to be in 1 to 1

correspondence with integers with natural numbers ok.
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So,  very roughly  speaking natural  numbers  to  natural  to  ratios  fractions  to  what  are

called algebra. So, these are called Rationals that is what I am I looking for rationals to

irrationals which forming two class; one class is called the algebraic irrational.

So, these are your square root 2 and 3 plus square root 5 or whatever because this can all

occur as solutions of polynomials with integer coefficients. The polynomial should not

have arbitrary real numbers as coefficients and if they have any rational coefficients you

can always convert  them to integers by multiplying out by their  LCM. So, these are



solutions  of  so  called  integer  polynomials.  It  turns  out  that  the  fractions  plus  the

algebraic irrational are all countable.

So, I will leave some space here and write over here countable and sorry I meant to say

denumerable. So, this is finite number elements a set is countable if it has finite number

of elements 5, 15, 59,000 so, all countable. Denumerable means in 1 to 1 correspondence

with naturals. So, indefinitely large, but you can put them into 1 to 1 correspondence

with natural numbers.

The  funny property  of  denumerable  says  that  their  proper  subsets  can  be  in  1  to  1

correspondence with them; usually proper subset means you leave out some elements

then you can never create a 1 to 1 correspondence in any finite set. But a denumerable

set 1 to infinity where you can leave out the first 3 elements and start counting 4 as first,

5 as second. Again you have a 1 to 1 and correspondence with the original set.

So, that is this strange property denumerables, but they are still under control in the sense

that they are listable as natural numbers all the odd integers, all the integers that are

multiple of 3. So these are all subsets they are proper subsets but they are in 1 to 1

correspondence  with  the  original  set.  This  is  called  denumerable  and  the  algebraic

irrational said well as the Q’s the rational are all denumerable this is an amazing result,

but  that  is  true.  So,  up to  here,  but  then  there is  still  remain  funny creatures  called

transcendentals.

The  most  common examples  are  pi  and e  the  base  of  natural  log  and  all  the  other

examples of transcendentals would come only from values of special functions like your

Bessel functions and then you define all kinds of functions; that can map out the whole

space of real. You will find this next category of irrational which are not solutions of

algebraic equations, but their solutions of some different there are values of solutions of

differential equations.

They will occur in the list of values of items in list, but whatever the in the set of solution

set of and in fact, does functions are therefore, call transcendental functions sometimes.

Turns out that the real lines real weight its real content transcendental ok, because all

these are countables and you can define a way of giving weightage to an interval such

that all the countables all the denumerable have 0 weight.



But  then  the  real  line  still  has  the  interval  0  to  1  still  has  a  weightage  1  and  that

weightage come entirely from the transcendental. So, funny as it may sound this is how

the continuum is defined. The most important property of the fractions related to the two

irrational  together is  that the rationals  are dense in real.  So, then we defined. So, to

understand the relation between these two classes of numbers we needed to define with

this last time metric spaces.
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So, that there is a sense of distance between two elements and then the Cauchy criterion,

Cauchy convergence.

So, just think of the interval between 0 and 1 and it is a matrix space because you can

display the distance between them is subtraction of 1 from the other the greater from the

smaller. And the Cauchy convergence means that there is a limit point, the sequence is

convergent in the Cauchy sense if the difference between the sufficiently far away parts

of  the  series  is  all  close to  together, close  together  and then  we say that  a  space  is

compact.

So, Cauchy convergence does not necessarily mean the limit point belongs to the same

set, all it means that the limit the exists, ok. Limit points that are the main content of

Cauchy sequence, but limit need not belong to the set. So, let us keep this below and the

classic example of this is you can get pi you can get e as sequences of rationals.



You can obtain them in the limit I mean like pi v says is 22 by 7 first approximation and

then you can keep growing the fraction until it approaches by as well as you like, but by

itself is not a rational.

So, for example, transcendental and all of all irrationals can be obtained as limit points of

sequences of rationals. So, the limit point need not be itself a rational, but it exist what

we  do  now is  that  we  include  all  the  limit  points.  Take  a  set  consider  all  Cauchy

sequences and whatever the limit points of all the Cauchy sequences are include them in

the original set that set is called Cauchy complete, ok.

So, just to think back a little bit what we have done is well when you talk about limit

again you are talking of infinite things you know, but they are denumerable the sequence

is a denumerable number of terms in it. So, we are trying to grasp then non-denumerable

by  some  well  defined  logical  processors  of  denumerable  and  that  is  the  great

achievement of this whole exercise.

And after that the important thing is that the rationals are dense within reals; every single

real number can always be obtained as a limit point, what one can be sure of is that there

is nothing else left out ok. So, I will not spend more time on this you can read the notes,

but this is really the underlying logic. This is all the legal fine print behind everything

else that we discuss later.

And if there are you can coming do not be surprised that every once in a while there will

be some exceptional case that will be thrown up and this is why people have tried to plug

all these logical holes and you never know you may still come out with something new.

And when you do you have something to go back to, to check whether all the previous

reasoning led to that or not or you do you have something completely new.
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So, now we write down finally, the idea of compactness. It is closed in Cauchy sense. So,

it obviously has a metric.  So, is a metric space closed in Cauchy sense and to all its

elements are bounded. One way to say it is that given any two elements the d, the metric

that is existing d a b is always less than or equal to some M. The distance between them

is bounded to remain and sure to remain less than some M, for all a and b belonging to

the set and for M some real number. So, such a set is compact.

One classic example is let the disc let us saying the in the plane, the disc is compact

whereas, the plane itself is not compact. The unit disc with what shall we say x squared

plus y squared less than or equal to 1 is compact, ok.
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Now,  we  come  to  classical  groups,  the  continuous  groups.  Finally,  with  all  this

preparation we come to what are called classical groups. This nomenclature is due to

Hermann Weyl and Eugene Wigner. So, Wigner has I think Wigner has a book called

Group Theory and Applications to Quantum Mechanics. This is the first person to write

out  the  whole  book.  So,  as  you  may  know  Eisenberg  who  proposed  the  matrix

mechanics, did not know matrices until after he proposed them.

So, physicist education of mathematics did not include matrices in 1920’s. So, you can

imagine that group theory was far from out of that education and so, physicists continued

to be surprised all the time how smart mathematician where; because when they got to a

problem and they  found the  method  of  calculating.  They found that  mathematicians

already had developed the detail mathematics of it.

So, that happened to Wigner and Weyl also; Weyl was himself a mathematician, but to

Wigner found that everything you needed to do had been done 50 years before and so,

Wigner  later  wrote an article  called  the unreasonable applicability  of mathematics  to

physics and so, we are doing this course because of this very unreasonable applicability

of  group  theory  to  lot  of  physics.  So,  they  called  these  groups  classical  you  will

understand in what sense; the other terminology for it is Matrix groups.

So, we begin by talking about Matrix groups. What do we mean by this? Take n by n

matrices and consider them as group elements as a group set of n by n. Let us begin with



real  matrices  under  multiplication,  usual  matrix  multiplication  they  form  a  group

provided what we need four properties;  closure we know product of any matrix is a

matrix. We know the matrix product is associative so, that is not a problem. The identity

matrix exists only you to put one on the diagonals, but we also need the inverse.

So, if the matrix is 0 rank I mean if its determined is 0 then you cannot invert it. So, you

need to put the condition that determinant of A is not equal to 0. So, it is obvious that this

that forms a group. The set of all real n bind matrices that are invertible forms a group in

the usual sense and this is going to be our prime and essentially the entire example of

what  continuous  groups  are;  the  only  continuous  groups  we will  discuss  are  all  the

matrix groups.

So, there is always a very clear coat realization.  Remember we kept talking in group

theory about career space and realization of the group. In the continuous group theory we

are primarily going to talk entirely through the realization itself. But if you go to all the

sophisticated  mathematics  book,  they  say  that  there  is  life  beyond  that  there  are

continuous groups that are not necessarily matrix groups. But we are not going to really

have to deal with them and that is why we are going to swear by Weyl and Wigner and

live with the classical matrix groups.

So, to begin with let us next say. So, we already said we are going to talk about the

continuous groups entirely in terms of the realization which is as matrices. The carrier

space is the n-dimensional vectors in matrix representation column vectors. So, that is

going to be the carrier space. The group that we identified the most general group is

called therefore; general linear group.

And I talked about the career space because that makes it clear why we are calling it

general  and  linear.  General  means  if  they  are  all  the  possible  matrices  that  have

determinant not equal to 0 and they are essentially linear transformations on this careers

space.  Similarly,  you  can  do  the  same  exercise  with  complex  numbers.  Introduce

complex and dimensional vectors as career space,  complex and band matrices whose

determinant is not 0 and those are called GL n C.

All the classical groups that Weyl and Wigner introduced are going to be subgroups of

this GL n R or GL n C, where GL n R is itself a subgroup of GL n C by setting imagery

parts to 0.
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So, now let  us begin with one of the classic classical group which is the orthogonal

groups, and to discuss. So, the most common classical groups are the orthogonal and

unitary groups. Since, you already would be familiar with this in some ways we drop the

words, but now we develop formally what this means; we begin with the idea of inner

products.

So, you will see all your familiar things as we go along, familiar ideas as we go along

remember that. So, anyway we will come to it; orthogonal meant o transpose o equal to 1

and why that is an interesting property to impose we go through this little formality.

So, we say that inner product x, y with x and y belonging to belonging to n-dimensional

real vector space should have property. Of course x, y should belong to that is the 0th

property should give a real number, but more importantly so, what I mean is it is not a

property. So, it is part of the definition.

So, inner product is a operation that takes two elements of the career space and gives the

maps them into a real number. Property 1 it is symmetric. So, you will see a analogy to

the metric spaces we are defined; this essentially is like defining distance d between two

points in a matrix space. There of course, analogies the d essentially will turn out to be

the distance between n points of your stick vectors.



Number 2 is symmetric bilinear and positive definite. So, bilinear is where metric space

is a property metric space does not have; in metric space we simply said that Schur’s

inequality. The triangle inequality it is actually the triangle inequality in the more general

sense called Schur’s inequality. So, the second property is bilinear which is saying x plus

ay plus bw equal to a times x, y plus b times x, w. So, this is called bilinear.

 We showed here the linearity. So, a and b are real numbers because you have a vector

space, vector space is where you can multiply by real numbers so, a and b are real. This

property is called bilinearity, because what we wrote out is linearity in the second slot,

but the property 1 says you can flip it around. So, it must also apply to the first slot.
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So, you have bilinearity and 3 is positive definiteness which is that x, x if you put the

same thing into the bilinear function. This has to be greater than or equal to 0 and 0 only

if x is the 0 vector that is real number 0 this is vector 0.

So, these are things familiar to us about dot product or inner product or scalar product a

dot b a b a square plus b square plus 2 a b cos theta, but we already have one great

counter example to this when we get to special relativity because the Minkowski inner

product  fails  test  number  3.  So,  mathematician  said  figured  everything  out  in  19th

century, but we had something to give the back to them as a gift ok.



So, something very fundamental to physics but which fails their criteria number 3. So,

some of the theorem they proved assuming these three will fail. Well, notable exception

Minkowski metric x equal to x 0, x 1, x 2, x 3 and x dot y equal to x 0 y 0, but minus x

dot y and we are said c equal to 1 usually x 0 is c times t. But we know that the Lorentz

invariant  inner product of 4 vectors as this relative minus sign. So, it is not positive

definite so, fails criterion 3.

But  it  turns  out  that  still  a  lot  of  the  things  work  ok,  as  far  as  the  group  itself  is

concerned, but we do get interesting things when we get to group representations and we

will see some of that in subsequent lectures.

On the other hand, next thing is the complex version inner product where the x belongs

to n-dimensional  complex vector  space and in this  case the multiplication,  the scalar

multiplication is also by complex numbers. So, that is the main difference when we get

to complex vector spaces.


