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Lecture - 25
Preliminaries about the continuum - I

So, to begin with this lecture the things we wanted to do was to wind up the previous

discussion of discrete groups and from now on we will start with continuous groups. So,

let me first write over here.

(Refer Slide Time: 00:33)

So, I have some slides for this which basically discussed Young tableaux for irreps of for

reps sizes of irreps sizes of course, S n the symmetric groups. So, there is some method

to get sizes of representations of the permutation groups and we will just go over this the

tail piece of the discrete group discussion.

We did go through well I think we will cover it; I have prepared some slides to do this.

The orthogonality main consequence which is that sigma p i square sigma p i square or l

i squared equal to 1 that is the number of classes. 

So,  we saw that  the number of classes is  equal  to number of irreps and the sum of

squares of so, there as many classes as there irreps and sum square of the numbers sizes

of these is equal to the size of the whole group.
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So, this title is carried over from the previous all the conjugacy classes of S n, but it just

recapitulating  some  of  that.  We had  done  regular  cycles  and  order  n  group  can  be

embedded through regular cycles and representing cycle structures through Young boxes

that is what we will  do today. And we had theorem on partitions of partitions of the

number n and the number of conjugacy classes n.

So, we had seen that the number of conjugacy classes in S n is equal to the number of

possible partitions of the number n because it amounts to just saying how many cycles

structures you can create.

So, each cycle structure is one conjugacy class right and therefore, counting the number

of cycle structures give you one conjugacy class. So, we had proved that conjugacy class

conjugacy the cycle structure does not change under conjugacy operation and therefore,

each cycle structure represents one conjugacy class and so, if we can count the number

of such conjugacy classes; that can be done simply by seeing how many ways you can

partition n because that is the way to create cycles.

So, number of conjugacy classes is equal to number of partitions of n for the group S n

and the number of elements in a particular conjugacy class is we had designated it p i

while we discuss the theorems about orthogonality. We said some over character  p i

times character of that class squared etcetera.



(Refer Slide Time: 04:32)

So, that p i can be calculated as follows. Suppose I have a particular class which content

cycles of length 1, 2, 3 maximum, it can have a cycle of length n and suppose there are

lambda r cycles of size r; So, 2, 2 cycles or 5, 2 cycles or 3, 2 3, 2 cycles whatever.

So, lambda r is the number of cycles of size r then the size of that particular the number

of  elements  in  that  particular  conjugacy class  is  given by n factorial  divided by the

number of cycles of size 1; if it is lambda 1 then it is lambda 1 factorial times 1 to the

lambda 1, 2 to the lambda 2 times 2 factorial etcetera.

So, this formula we had not actually derived, but it can be seen it is not very difficult to

check this formula from just the definition. So, now, I go on to thus the second part that

representing cycle structures through Young boxes and we will see that since the number

the one conjugacy class basically stands for one irrep. There is a correspondence between

number of irreducible representations in number of conjugacy classes.

So, first we represent the conjugacy class using Young tableau and then we say how to

calculate the dimension of the irreducible representation associated with that particular

class. So, I am sorry for this word regular occurring too often, but this is what the books

write.

So, to remain in consonance with them I have written this; that two books I have referred

are Hamermesh which really has everything although it is written in a very I mean it is



because it has so, much material I think he did not have time to be to systematic about

the presentation. So, things are really running into each other; So, Hamermesh book and

Dresselhaus book.

So,  Dresselhaus  books  book does  not  talk  about  Young tableaux  at  all,  but  she  has

another way of calculations permutation, but the sizes of irreps, but we will do this ok.

So, the regular rules for filling are that.
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So, let us first look at the example; suppose I have to deal with this figure I can you see

the figure.

So, suppose we are dealing with permutation group S 4 ok. This S 4 it is permutations of

four different objects then what you do is you start drawing 4 boxes and then draw them

in various order and then fill them in with numbers 1 to 4 ok. The rules for filling are as

fall as its I am going back to one transparency the regular rules for filling are; List all the

partitions of n by n by non decreasing number of boxes as we go down the rules.

So, take the total  number n of boxes and start  stacking them sideways and then also

downwards, but such that the upper row has at least as many boxes as the next row. So,

this is a non-decreasing number of boxes as you go down I mean in each row. So, this is

a row with 2 boxes. So, there can only be 1 and 1 below or this is row with 2 boxes

below can only be 2 when you get so, you begin with 4 in the row.



Then suppose you reduce it to 3 then put the 1 here leftmost then suppose you took 2 in

the first row. Next you can put 2 then you took 2, there is another way when you have

taken 2 boxes in the first choice to stack 1 and 1 in the next 2 rows. But suppose finally,

you take only 1 box in the top row then you can only put 1 1 1 1 below ok.

So,  this  is  the  way to  put  the  boxes  then  fill  this  up by  numbers  1 to  n  in  strictly

increasing order in each row ok, top to left to right and also top to bottom. So, here first

letters just check that this is according to the system we saw write. The number of boxes

in subsequent rows is strictly non-increasing ok. It can be same, but not increase. So,

then we get these 4 patterns for 5 patterns for S 4.

Now, we start filling with numbers 1 to 4. In the first row there is only one way to do it

in a strictly increasing order 1, 2, 3 and 4 then in this pattern which is called 3 coma 1.

We can fill 1, 2, 3 and 4 or we can fill 1, 3 and 4 because it is increasing, but we can put

1 and 2.

Similarly, we can put 1, 2, and 4 and fill 1 and 3 showing vertical as well as horizontal

directions the filling is strictly increasing; then let us look at this it is 1, 2, 1, 3, 2, 4 or 1,

3, 1, 2, but this also has to be 3, 4.

So, you could not have put 1, 4 and 3, 2 because 1, 4 would be increasing downward, but

3, 2 would not be. So, you can only fill in strictly increasing order and use is number

only ones. So, then this gives this pattern there are two ways of doing this; then we go to

this format. We can put 1, 2 then we can put 3 and 4 below there is no other option. If we

put 1, 3 then we can put 2 and 4 and if you put 1, 4 then we can only fill 2 and 3.

Similarly, when we come to the final format we can only go 1, 2, 3, 4 there is nothing

else you can do. Now, the point is after filling out count the number of ways you could

fill out, show in the case one for this pattern there was only one way of filling. So, we

write that n equal to 1. There is only one way of filling it.

Then we write one there are three different ways of filling this pattern 3, 1 and so, we

call it n equal to 3 and this one is 2 and so on, ok. So, this gives 2 this has 3 ways, this is

1  way.  So,  this  gives  the  dimensionality  of  each  of  the  irreps  there  are  4  sorry  5

irreducible representations.  Remember that partitions of 4 or 5 so, that there are that

many conjugacy classes.



But therefore, there are that many irreps and now this list is giving the sizes of the irreps.

So, there is a more formal way it is called Frobenius formula which actually give some

algebraic  answer.  But  this  Young  tabular  method  is  a  simpler  way  of  realizing  the

Frobenius formula in a pictorial way.

So, here we find that there are 5 irreps and their sizes are 1, 1, 3, 3 and 2; one particular

thing to note about permutation groups is specific to permutation groups is that you will

have this conjugate patterns. You will have 3, 1 then you will have a 2 and 1 squared, but

if you see pictorially. So, it is written 2, 1 squared because 2 in first row than 1 and 1. So,

it is 2, 1 squared this thus correspond to 2 cycle, 1 cycle, 1 cycle this corresponds to 3

cycle and 1 cycle.

But the 3 recycle, 1 cycle and 2 cycle and 2, 1 cycles are actually geometrically visually

flipped rotated versions of each other, ok. This if you flip, if you rotate it by 90 degrees

well whatever mean sorry, this if you rotate let us say clockwise and then flip mirror

image then you will get this.

So, this pattern and this pattern are conjugate to each other. The first pattern and the last

pattern are also conjugate to each other, I can just rotate it clockwise by 90 degrees I get

this; such conjugate patterns has same sizes and the 2, 2 squared pattern goes into itself.

So, it has no it is self conjugate. The other thing we can now check is that 1 square plus 3

square plus 2 square plus 3 square plus 1 square that should add up to S 4 size, right; So,

9 and 9, 18 and 4, 24, 25 23 and 24, 22, 23 and 24. So, we have for the S 4 group all of

the irreducible representations and their sizes listed by this Young tubule group method.
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So, I have just written compatible with GOT basically this got I just listed; some of the

actually I should have written p i squared. The number of elements in each conjugacy, no

this is the dimensional it is of each of the irreps squared is equal to the order of the group

which is n factorial for permutation group.

And this what I already said the conjugate partitions have the same dimensions, where

conjugacy is  in this  pictorial  sense of 3, 4, 3, 1 and 1 and that  same pattern rotated

becomes this no, but they are not in same conjugacy class structures different there, there

independent conjugacy class.

So,  again I  have  put  conjugate  on in  inverted  commas  Hamermesh book calls  them

conjugate  box patterns,  but  it  is  dangerous because we are using conjugate  in  many

places.  But  it  is  only  this  geometric  conjugacy, it  not  that  it  means  an  it  is  just  an

observation that if you do apply these.

So, firstly I am we are not going to prove give the proof of why this process works; we

are just giving this as a recipe. I should have return here I will just update this file before

uploading it. So, this is called the Frobenius theorem where Frobenius explicitly gives

proof of how to count the sizes of the irreps of S n of the permutation groups.

But when you begin to use this Young tabule you can see the relation of this box that

arrangement to this box arrangement and then you will find the this their sizes are same,



that is all. There is nothing else that at this point can be said, probably if we followed the

whole Frobenius proof then we would see why the sizes of these come out the same sizes

of irreps come out the same. 

So, this is a table taken out of that Mildred Dresselhaus book table 10.1: The number of

classes and listing of the dimensionalities for the irreducible representations of various

permutation groups from P 1 up to P 8 and so, we just did this P 4 which had 5 conjugacy

classes and one checks that 4 factorial is equal to 1 squared plus 1 squared 2 squared plus

3 squared plus 3 square.

Similarly, if we did P 5 there would be 7 conjugacy classes and you will see the because

of that geometric conjugacy between the box layouts these numbers are repeated there

are two 1’s there are two 5’s well here there are four 5’s there are two 9’s there are two

10’s and one 16.

So, one gets this total numbers 720 for P 6 and so, on. Of course, we are not going to

these are not realistic we do not really need them, but I thought it is good that at a glance

this table has been given. The next thing so, this is basically this for this method you

should know. I did not want to include too much enumeration in the up to mid sem, but

now we will include it in the tutorial sheet and you should know this.
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The only comment as I was going through this Dresselhaus book was that we also have

and this is an interesting group. So, there is an icosahedral group per designated I h,

icosari refers to 12 I think 12, sorry 20 headed group. A 20 sided regular polyhedron and

this is the regular truncated icosahedrons.

So, let me show the structure.

(Refer Slide Time: 19:18)

It is the structure of carbon 60 and it so, that is why it is important and actually this

author of this book Dresselhaus is famous for her work with carbon nano-tubes and C 60.

So, this is the cleanest picture to see here, you have a hexagon here and another hexagon

another sorry hexagon, but it is it has a pentagon as its neighbor on this side. So, off the 6

sides 3 sides this one, this one and this one can you series. These 3 have pentagons as

neighbors and the other alternating ones have hexagons as neighbors.

This  used to be the football  pattern  I  do not know, they keep changing the football

patterns, but some football patterns have this pattern on them pentagons and hexagons.

And they are stitched together in this particular way and if we see the environment of a

pentagon, let us say here you can see this pentagon here.

So,  this  pentagon  has  hexagon,  hexagon,  hexagon,  hexagon,  and  hexagon.  So,  the

pentagon  has  all  hexagons  and  all  5  sides  whereas,  the  hexagons  have  alternating

pentagons and alternating hexagons.



This itself is of course, not a regular polyhedron, but it can be got by a chopping of the

vertices of the irregular icosahedron. So, and this is the structure that and if you count the

total number of vertices there are 60 vertices on this regular figure well not regular, but

the symmetric figure and amazingly enough carbon actually forms a structure like this.

They one comment made in this book is that ideally geometrically these sides are all the

same ok. The hexagon sides have a particular length and the pentagon lengths are exactly

the  same,  but  it  need  not  be  because  it  is  actually  from a  regular  polyhedron  your

chopped off vertices.

So, if you did not chop them off exactly at the correct point you can get slightly different

sizes and the author says that the sizes of the hexagon bond lengths are slightly smaller

than the pentagon bond length. So, it is not truly highly symmetric structure in C 60, but

approximately is it is 1.2 verses 1.4 angstrom something like this.

So, there is a difference, but approximately people are going to treat it as this and you

can deduce a lot from that; you can incorporate the small inequality as a departure from

symmetry. First you drive the symmetric thing and then you can treat the next thing as a

perturbation it. So, now, this figure also shows the various symmetry axis, if you stand

on top of a pentagon like a desktop figure then you have a C 5 axis that you can draw

pointing down from you right.

So, there are C 5 rotation points then there are C 6 rotation points that are here sorry C 3

I am sorry; we already discussed that because this hexagon has to be rotated into this

hexagon. So, if you are in if you are on a pentagonal face then you have C 5 you have 5-

4 rotation axis.

If you are in a hexagonal face then you have only a threefold rotation axis because there

is an alternate of hexagon pentagon pattern. So, this is C 3 as you can see finally, there is

a C 2 access shown. This requires a little carefully looking at the whole figure this is

passing through the centre of this bond ok.

So, if you look at a hexagon, hexagon, pentagon, pentagon, pattern then this particular

bond which is between the vertices of 2 pentagons, but is a shared side of 2 hexagons. If

you stand on top of this bond and through its centers and axis; then you can see that the



pattern can be rotated C 2 180 degrees there is a symmetry of pentagon here, pentagon

here, hexagon here, hexagon here.

So, there is a C 2 access and there is some other C 3 axis shown here which looks a little

more complicated. So, one can probably pick up the actual buckyball as it is called and

see all the details, but its character table is given here um.
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So, now that we are experts at reading character table we are not scared at with all these

label we are not scared because they are not supposed to remember them um, but well

because. So, these are some notations which I am not emphasizing in this course here we

are more focused on the mathematics of the group theory and applications.

If you go to the relevant chemistry or molecular physics atomic physics course you will

or  solid  state  physics  I  am sorry  not  atomic;  then  you will  learn  the  corresponding

professional ways of denoting, but this basically is listing the conjugacy classes and this

is listing the various irreducible representations.

So, sorry these are the conjugacy classes the cemetery operations about the so, there are

notes well you can read them that is, ok. So, she is explaining there is a element I which

is an inversion centre. So, there are 12 C 5’s and 12 C 5’s square operations. So, these are

the independent conjugacy classes then there are 20 C 3s, the 20 hexagons in it and 15 C



2s those special things passing through bonds and so, on. So, these are all the conjugacy

classes and all the irreps.

The  corresponding  statement  is  that  this  group  has  120  elements,  but  it  is  not.  So,

icosahedral group I h is isomorphic to one of these permutation groups, but they are not

the  same ok.  So,  that  is  the  important  thing  and so,  you have to  enumerate  the  I  h

separately. It just accidently has the same number of size as a one of the permutation

groups; so these much for this discreet groups.

We will end with this nice BuckyBall example and practical things with it may be in the

exercises. But the main thing new method that we are emphasizing in this class is this

way of calculating the sizes of irreps of the permutation groups. This is not applicable to

any generic group, but to permutation groups we can use Young tabular method to do

calculate the sizes, ok.

We go to the second half of the course which has to do with continuous groups. Simplest

example of continuous group is the rotation group, here we do not care too much about

the symmetry of the rigid body. So, long as it remains the same body. So, we could have

arbitrary  shape,  but  it  should  not  be  stretching  and  deforming,  but  under  rotation  it

remains the same thing.

So, from the point of your mechanics or dynamics so, all we need is that the rigid body

remains the same; no particular symmetry to the symmetry of the shape; and what so, we

can of course rotate; we have an interesting theorem of Euler that every motion of a rigid

body is translation and a rotation about some axis passing through the rigid body. 

So, it is rotation it is translation of the centre of mass by some vector capital R and so,

you take any rigid body and this is for any finite motion; you start at some point you wait

for 10 minutes and see where wherever it is you can a space station going around or

whatever it is effectively the initial configuration and final one are going to be separated

by one displacement vector for its centre of mass and a single rotation about one given

axis.

So, this is important; however, it is tumbling and rotating. The final answer is between

the initial shape and the final shape there is a unique and cap axis about which a single



rotation simple rotation by an angle theta, will convert the initial configuration into the

final one.

So, this is and that is why the theorem is interesting and we can count the number of

degrees of freedom in it because the translation vector capital R has three components

and the end cap x which the unit vector which designates the axis as to independent

components and there is an angle theta. So, totally there are 6 degrees of freedom as we

expect.

So, this set of operations the rotations form a group called as the group of dynamics of

rigid body, but that is a more elaborate thing because we know under change of frames

Galilean transformations also the motions have some symmetry.
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So,  for  the  time  being  we  just  note  that  the  rotations  by  themselves  form a  group

parameterized  by  3  continuous  parameters  2  independent  numbers  in  n  cap  and  1

independent theta.

We can also see that  these 3 parameters  are bounded the values of n cap cannot be

infinite because it is bounded to be 1. So, note that n x n y n z with sigma and i squared

equal to 1 are all bounded; 0 less than or equal to n i less than or equal to 1 and for theta

and 0 less than or equal to theta less than 2 pi. The rotation is maximum by an angle 2 pi.

So, all of these parameters are bounded.



This is going to be one characterizing feature of the group, where whether the parameters

are bounded or unbounded ok; that is the nature of this particular group.


