Theory of Group for Physics Applications
Prof. Urjit A. Yajnik
Department of Physics
Indian Institute of Technology, Bombay

Lecture — 23
Character tables & molecular Applications — I

So, now we continue with the things we were doing last time, some of it let us restate the

abstract things and then these two lectures are quite nice. So, I hope to rely on them ok.
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So, now the title for today’s lecture is representations, characters and applications to
spectroscopy. So, to just recap slide somewhat what we were doing last time, we have

the orthogonality theorem.

Let us write once the orthogonality theorem in its most general form based on which
because of for deriving which Schur’s proved his lemma. So,
_ |Gl
> D)D" (¢)=5,8,5" =
g a
So, this is the Great one indeed it deserves that name. So, this is size of irreps. So, this is

for irreps a. So, the theorem of course, applies to irreducible representations and then the

derived once from this and we use unitary reps and from this we derived the related the



relation for characters, y'*(g); we have the relation sum over g but then we can we know
that the characters are same for all the elements in a class and we have already discuss
the geometric meaning of a class, there essentially elements that do the same thing, but

are their starting points are different that is all.

(Refer Slide Time: 05:17)

So, since y¥(g) are same within a conjugacy class, we can also write this out as pi,
where this is the number of members in the class i and now we do not sum over g

anymore.

So, this summation was over g, but now we simply sum over classes, i index is the class
actually. Then we learn from this that for a reducible representation which we just called
D, such that D is direct sum in linear algebra sense of some standard way of listing
irreducible  representations, = which ~ we  sometimes  write  symbolically
C (@)
a
> meD%(g)
as o=1 and p is total number of irreps distinct irreps of course, right. So, from
this we can deduce that the weightage, mq of an irrep alpha in D can be extracted by
using the orthogonality. Take the characters in the representation D whatever it is and
then multiplied by x", project it out onto the representation a and sum over all g that

gives the weightage of the representation « in it.
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We also had proved that there is another kind of orthogonality relation,
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It is called order of the class, the order of class i is pi then we have another kind of
orthogonality where we also get this. The up short of all this is that we have very strong
constraints on the number of classes we can have an the number of irreps we can have.

And then there is a clever construct called the regular representation where G acts upon



itself as permutations. So, dimension of the carrier space, what is the carrier space? So,
the carrier space on which g is realized is g itself. So, it is obviously, a G dimensional

representation.

So, G dim representation i.e. again I want to emphasize |G|x|G| matrices. When
somebody says irrep of size n it means nxn size matrices. Now one thing we learnt was
that in the regular representation identity is the only one that as non zero characters and

> n=ld
so I will not repeat all this, but using this once can prove we proved that « , Where

ng 1s the dimension of the irrep a.

So, some square of the dimensions has to add up to G. So, this is going to restrict number
of classes and number of representations, not only that we had seen that the number of
times a particular representation is contained in this regular representation is exactly
equal to the size of that representation. So, you can see last times lecture and we had

proved all this.

Now today I want to take up uses of this in chemistry and I could have done this myself,
but I find some really nice slides on the internet. So, this is actually some introductory

course in chemistry.

(Refer Slide Time: 14:36)

Matrices and Matrix Multiplication

A matrix is an array of numbers, A,

To muitiply two matrices, add the products, element by element, of
each row of the first matrix with each column in the second matrix:

(1 2‘ *'. 2- _ | ey 1112]&(2!4)‘ _ i 10“
34 T | (3emeand) (e2Haxd) | |15 2

So, of course, the slide starts nicely by telling you what is the matrix, that is nice.
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Transformation Matrices

Each symmetry operation can be represented by a 3x3 matrix that
shows how the operation transforms a set of x, y, and z coordinates
y
Let's consider Can {E. C,, /. o,): L
x

But then it quickly goes into complexity saying that, if you have a molecule like this. He
is going to consider 3 dimensional case. So, in the quiz we just gave this ellipse in the
plane and just worried about its transformations within the plane, but once you have a
molecule although the molecule is planar; there is the z direction because the atoms are
not actually points. So, if you just make an idealized figure, which is planar then it is fine,
such molecules are called planar, but indeed you can flip the z axis and it has a meaning

because the atoms are some fluffy things which go upside down.

So, for this these elements are identified; E which is identity, Cz is just because their
bromine singing here you can only do a 180 rotation, then there is a full space in version
which is or sending x—>-x, y=>-y, z—~>-z and finally, there is oy this is what we would not
consider if we have an idealized planner figure, but here if you ran the plane in the plane
of the molecule, there is a reflection symmetry about that. So, there is a z—>-z is a
separate symmetry. Using this C 2 is identified; so, this is x, y and z axis. So, the C; is

just 180 rotation so, it is -1, -1, this is 1 and the this is inversion a (-), (-), (-).
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Representations of Groups

The set of four transformation matrices forms a matrix representation
of the C,,, point group.
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the operations. e.g..

These matrices combine in the same way a
| a4 0 o)

CxC=|0 1 ofo

o o 1 )0

The sum of the numbers along each matrix diagonal (the characten
gives a shorthand version of the matrix representation, called I':

Ca E Ci i a,
=

8 (gamma) is a reducible resentation bic it can be further simplified.

Now, points out what are characters and that there is a the Obey group law, but let us

look at the bottom table. Here we should read this row carefully; here is a particular

o — o

0

0
representation that is being presented identities of course, E 1] , C2 is where x and y are
exchange, because it is a 180 rotation then there is full space in version and then there is

a z axis reflection the oy, plane ok.

These together form a group and you can check because C? = I, on? = I and so on. So, for
this particular 3x3 representation if you begin to write the characters, then for the
identity we will write 3. For the C> we will get a -1 because it is trace of this, for the

inversion we get -3 and for the reflection plane we get 1 ok. Now this gamma is

1 0 0
0 [1] o
reducible and one of the ways of seeing it is that after all it is just [0 0 “1] dimensional.

So, it is block diagonal with each block just containing one element.
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Irreducible Representations

The transformation matrices can be reduced to their simpiest units
(1*1 matrices in this case) by block diagonalization:

X ~ -~ - . - ‘
@_ o ¥o) 1 o o) 1 o o) M1 o o
ET(m)o| Gifo m o Elo (11 0| o |0 1 o
o Ty, oo m 0 0 [ o o 1y

We can now make a table of the characters of each 1x1 matrix for each
operation: FYMmeTy SperInem

i a,, coordinate

+ [s]=] |
The three rows (labeled B,, B,, and A,) are irreducible representations
bof the C,,, point group.
They cannot be simplified further. Their characters sum to give I'

So, this is clearly a reducible representation and that is what is identified essentially if
the each of the axis is treated more or less independently. So this square bracket identify
the single representation in this, and we can write out the character table of this. Now
there is a notation of these B, B and A which will be explained soon. This is actually
guess work and we are going back and forth a little bit. Just to repeat we know that this is
an abelian group. So, every element is in it is own conjugacy class right and so, there are
four conjugacy classes, correspondingly we know there should be four independent
irreps right, there has many conjugacy classes as the irreps. But the way we are breaking
up this representation, we are getting only 3 of them, but whatever they are we are

writing them down.

So, 1, -1, -1, 1, 1, -1, -1, 1 then the second row is 1, -1, -1, 1 etcetera. So, these are just
writing this out and showing how the reducible rep is just composed of this. Each of
these occurs once in it, the mq that we were deriving is only one in this case. Mind you
this is a very very simple example, but do not be fooled by it because it gets complicated

very quickly.



(Refer Slide Time: 19:43)

Irreducible Representations

The characters in the table show how each irreducible representation
transforms with each operation.

LYY O 3DONS.
A

[ C:

1 = symmetric (unchanged); -1 = antisymmetric (inverted); 0 = neither

A, transforms like the z-axis: E - no change
C, < no change
I = inverted
a, 2 inverted

A, has the same symmetry as zin C,,

So, this is written out character show each irrep and how it transforms and points out that,
this is the other thing from chemistry and from physical point of view; this row
essentially captures property of x coordinate, this row captures property of y coordinate.
And the other thing is that if this particular axis x, what is its fate under each of the
elements that you have to see. And if nothing happens to it then we get a character 1 and

if it gets flipped then we get a character -1.

And if it is neither then we get actually 0 ok. If it is not a definite that is the rule about
characters. So, you will see how chemist work this out they are not going to worry about
Schur’s lemma ok. So, they will just figure out from here that oh you just assign
character 0, if nothing happens to it. Now in this case each of the elements of course,
does touch these symmetrically or anti symmetrically. So, this is what happens for and
now he has introduced one more representation. So, here it is explain the Ay transforms
like the lowest one, transforms essentially like z axis. So, the things that do not change,
we get 1, the things get flipped we get -1, if actually it neither was symmetric nor anti

symmetric then we would have to put entry 0.
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Irreducible Representations

The characters in the table show how each irreducible representation
transforms with each operation.

SymmetTy Sperabont
A
{ A

-

.
&
3
2
g

reprasentations

1 = symmetnic (unchanged); -1 = antisymmetric (inverted); 0 = neither

¥ B, transforms like x and y:  E - no change

L C, 2 inverted
X I = inverted

@, < no change

The two B, representations are exactly the same.
We “merge” them to eliminate redundancy.

Now, so Ay has the same symmetry as z in Czn and the 2 B, representations are exactly
the same and we can quote merge them. So, they actually reduced only one particular
representation, this is because the 2 are in the same conjugacy class. So, they are not

giving anything new.
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Irreducible Representations

The characters in the table show how each irreducible representation
transforms with each operation.

LYy Op 3BONT
A

1 = symmetnc (unchanged); -1 = antisymmetric (inverted) 0 = neither

B, transforms like x and y:  E - no change
L C, < inverted
x I = inverted

a,  no change

The two B, representations are exactly the same.
We “merge” them to eliminate redundancy.

So, x and y these are merged. So, this is called B, and this is the z one is called Au. This
terminology is A, B and E and we are not going to really worry about it, but you will see

it listed all the time. What is interesting to worry about is the fate of which coordinates



are covered by this particular representation and fate of this is captured by this
representation. Now, but we know that we do not need two more rows here and list of

complete irreps.

(Refer Slide Time: 22:15)
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Character Tables

List of the compiete set of irreducibie representations (rows) and
symmetry classes (columns) of a point group.
IYMMeTy CLISIes

. i c.,lm‘m

- The first column gives the Mulliken label for the representation
+ A or 8= 1%1 representation that i symmetnc (A] or anti-symmetric (8] 1o the principal sxis.

= 27 representation (character under the dentity will be 2]
= Jx3 represantation (character under the identity will be )

For point groups with inversion. the representations are labelied with & subscript . (Qerade) or
(ungerade) to denote symmetric or anti-symmetnc with respect to iTversion

If present. number SUDSCTIDNS refer 10 the symmetry of the next operation class after the

principie axia. For symmetric use subscript 1 and f0r antisymmetnc use subscript 2

So, here in addition to Ay and By, 2 new things are added A and Bg. The Ag is the trivial
representation everything is represented by just 1. Remember that the trivial rep is
always one of the irreps that is the very important thing to remember and then this you
may ask where the hell did Bg come from and even if you knew know geometry or
visualization, we can get it by orthogonality, because I know there are 4 classes I have 3
representations in hand already, I have to guess the fourth one. Well it has to be a choice
of +1°s and -1’s such that it is orthogonal which each of the other 3. So, automatically we

get these signs because right if you just work it out it will come out like that.

So, this point number 4, this subscript u and g as essentially German word origin. For
point groups with inversion, the representations are labeled with a subscript g, which
means gerade or u which means ungerade, to denote symmetric or antisymmetric with
respect to inversion. So, whatever that is I will not elaborate on it further, but that is the

way of that is the nomenclature used.
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Character Tables

List of the complete set of irreducibie representations (rows) and
symmetry classes (columns) of a point group.
¥ cims

¥mmetry clazses
i

g, | linear | quadratic

i1
&g

E -
|

- The last two columns give functions (with an origin at the
inversion center) that belong to the given representation
(e.g., the diz; and dy orbitals are A;, while the p, arbital is 4 ).

So, now the more important thing from chemistry or physics point of view are that he has
added these 2 columns. So, first one was we already had this Ay and By and they were

properties of z, x and y but these 2 are also properties of rotations R, and Rx Ry.

So, identity the trivial representation is property of rotations about z axis whereas,
rotations about Ry and Ry themselves get affected by this element B. So, they are here,
they share essentially what happens to the xz plane and to the yz plane. So, Ry if you
rotate about x axis, you rotate y and z so, that is this z or you rotate about y axis, which
means you rotate x into z. So, this new classes that we got, the new irreps we got were
such that, they have specific property with respect to the quadratic things. Particularly
the trivial one leaves x°, y?, z* and the product xy individually invariant whereas, the xy

plane, yz plane is left invariant by this second class of irrep.

And there is a direct correspondence of R, then you get x y z, x y, X y z and y z X this
will be important a little bit later. So, and this is how they simply read of chemist just
read of by looking at a molecule, what the character table is in by guess work and by
orthogonality figure out the whole table. So, the last 2 columns give functions, with
origins at the inversion centre that belong to the given representation. So, for example,
this is some typo actually it means dx?, dy’ or this is the d orbital x, x?, y* and d,* orbitals

are Ag, in the p, orbital belongs to Ay. So, this is p and these are high level there are d.
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Properties of Character Tables

i a.;m-]qnm

- The total number of Symmelry operations is the orger (k). i = 4 in fws case

- Operations belong to the same cfass if they are |dentical within coordinate systems
accessible by a symmetry operation. One ciass s listed per column.

- & irreducibie representations = # classes (lables are square).
One representation s totally symmetric {all characters = 1),
- i is related to the characters (z) in the following two ways:

W k=Y P
[]

where ; and R are Indices for the repr and the sy y ope

- Irreducible representations are orthogonal: S‘ 2R 2, (R) =0 wheni=j
P f

Now, is coming back to actually emphasize what we just did, the tricks we played and

also yeah is just checking without proof the results we have proved and we have proved

D IX(EN'=h

this, ! , but there is also another interesting result which is that sum over R.
We proved a preliminary version of this, but not this particular result, we did proved that
sum over all a gives you 6j. So, if you take square of that then you will actually get this

result.

Here h is the order of the whole group ok. So, he is just verifying that if you take any
particular. So, y(E) =1, y* sum of these has to be equal 1 and sum over for a particular i
fixed value of the, it is what which way is it running. So, there is a i labels irreps and so,
that orthogonality properties basically verified here and he also points out which we

already noted.
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Example

Let's use the character table properties to finish deriving the C., tabie.
From the transformation matrices, we had:

Co E c I
B,

A

There must be four representations and one is totally symmetric, so:

E 1~ i L coordinate

So, the bottom 2 are already guessed first, I mean occurred naturally you wrote a 3D

representation and these 2 occurred there.

We already know that the trivial one has to be there and he is asking how do you get the

middle ones and you get them by orthogonality. So, that is what is he is proving and
happy that it can be done good.

(Refer Slide Time: 28:25)

C,, Character Table

o | B W m.[_m_L!na-n

The characters for A, and E come from the transformation matrices:
~ ~ ~ ~ ~
o o) cosé -sin@ 0] [-12 2 0 1
1 0 ‘ Cysing cos8 0 (=|yGa 2 0| Fpn| 0 -
0 1) 0 0 7’,‘ Lo 0 1)
FOLAION ML ADOUL A

Tew webiite and p ¥

In block form:

o] o) (cose -sin® o"‘ ["-1;2 ~an) o) "—'1 o)
1] =

1

E ‘[" 1 0| Gyijsing cose virz 12 0 |Fuadl -
1 | 1) | saa |

\o o [y \ e 0 1 Lo 0 1) \0

So, now we come to a more interesting example, the previous one simply had only 1D

represents, but now we also have a 2D representation. So, is just one degree more



complicated and this is going to be Csy. C3v means 3 fold rotations and vertical planes.
So, the v are the planes that contain the axis of rotation. So, v plane that contains the

nitrogen and one of the hydrogens at a time you have a reflection symmetry.

Now, in this case again you can begin with the quote organic representation that you
would think of by writing a 3x3 matrix. You would have the Cs, there will be 2 C;
elements because 120 and 240 degree rotation. So, they would have this form cos@, sin@,
which 420 just boils down to this matrix, and then we also have the vertical axis let us
say which contains the x and z plane then it changes the sign only of y ok. So, these are
firstly noted as properties of specific elements. So, there are 2 different rotations about
the z axis, but they both belong to same conjugacy class, because each of them is a

scaring out of 120 rotation relative to the previous thing.

So, they can be related by a conjugacy relation, they would belong to the same class.
Similarly the 3 reflection planes are all doing geometrically the same thing is just there it
is this plane or that plane and in fact, a rotation the z axis rotation can rotate the planes
into each other. So, they all belong to the same class. So, we write the class name by this
geometric suggestive thing and the number of elements in it Cs is the threefold rotation 2
m/3 rotation but there are 2 of those. So, we just bothered to list only the classes and not
the whole group. The whole group will have 6 elements, but we write only the classes
directly and here he has taken only one member of the representative; identity this Cs;
rotation we took only that 120 not the 240 and the character is 0 and this one will have

character this one will have character +1 ok.

We have to come back to this. So, by the way there is a slight ambiguity, E to denote the
identity element, but E is also used by chemist in the old German notation the G and U
there is also a thing called E. So, the irrep is also called E for some reason ok. But now
he points out that this generic 3D representation that we could think of is; obviously,
reducible right because it has 2x2 blocks and it has a 1x 1 block of the z axis. So, it is a
reducible representation. Is it clear? And so, here shown by drawing this red matrix
delimiters around the upper matrix and then green thing lower. But the 2x2 cannot be
reduced any further because the operations are mixing x and y axis. So, there is no way

to reduce it any further.
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C,, Character Table

E 20: 30, | limear | quadratic

The third representation can be found from orthogonality and #{E) = 1.

Note:
C, and C, are igentical after a C, rotation and are thus in the same class (2C.)
- The three mirror planes are |dentical after C, rotations & same class (30,)
- The E representation is two dimensional (y{E) = 2), mixing x.y. This is a resuit of C,.
x and y considered logether have the symmetry of the £ representation

Try proving that this character tabie actuaily has the properties
expected of a character table.

MNELEL,

7 eMe 0]

And therefore, draws up the character table, the third representation we find by
orthogonality. So, these 2 A and E are over here already. A is the green box basically is
the lower one that split off and it was actually trivial nothing happens to the z axis. So, it
is 1 111 1 and this one will be called Ai, but there are only 3 conjugacy classes. So,
there is a middle row to be filled, you can get it by orthogonality because you just have

to multiply this with this way.

So, you will get 3 relations, which will determine the 3 coordinates. So, that is what he
says here the third representation can be found by orthogonality and the fact that the y(E)
=1 that it is a one dimensional representation ok. So, additionally says try proving that
this character table actually as the properties expected of a character table, but that
property is actually orthogonality, but you can check the column wise orthogonality as

well.

But what is important to note also is that, the class A; and Az, under A; the property of z
and property of x%, y?, z? is captured. Under A, which we have to introduce by hand
essentially captures the R, which I would think captures the xy plane, but that is not true.
So, the E, third one where the character of identity is 2 and this is the character of this
rotations (-1/2)+(-1/2) = -1 and 3 is 0 because as you remember if the element that you
are considering has a definite property that we get a minus sign, if the element being

considered as no definite property then we get 0.
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Summary

Each molecule has a point group, the full set of symmetry operations
that describes the molecuie’s overall symmetry

- You can use the decision tree to assign point groups

Character tables show how the compiete set of irreducibie
representations of a point group transforms under ail of the symmetry
classes of that group.
+ The tables contain all of the symmetry information in convenient
form

- We will use the tables to understand bonding and spectroscopy

So, each molecule has a point group and you can go down decision tree, the tree is there

in that K Horns thing and first part there for is to identify character tables ok.

(Refer Slide Time: 35:20)

Using Symmetry: Chirality
One use for symmetry is identifying chiral molecules
- To be chiral, a molecule must lack an improper rotation axis

- In other words, for 2 molecule to be chiral it must be in the Cs, C,,
or Dn point groups (remember that @ = S, and / = §,).

So, this is end of this part, which is quick and rough way of building up character tables.



