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The next thing we take up is the idea of specific algebraic structures and we can begin by 

saying group. So, group as an algebraic structures since, we already discussed those 



generic properties, we can write down quickly now but the axioms are usually stated as 

follows, closure that is the set S is such that given any two elements in it and if you 

combine them using this binary operation whatever you have you get back something 

within the set ok. 

So if a, b ∈ S then a • b ∈ S, so we have  set S with the binary operation o, we can say 

then the first requirement is closure. Sometimes it looks a little trivial, but it turns out 

that it is important sometimes you can fall out of you know the original set that in your 

mind, so then the closure itself would be violated; number 2 is associativity.  

So, that we have already talked about; then there is an there should be an identity for it to 

be a group, there has to be an identity operation meaning some operation which actually 

does not change anything ok. So the statement is that there exist e such that a • e = a = e 

• a, but as I said purist say that it is not necessary to add both side you can get one from 

the other. 

And fourth is inverse there always exist a-1 for every a and of course, a-1 ∈ S for every a 

∈ S, such that a-1 • a = e, and it turns out that left identity and right identity are usually 

the same. So, these 4 axioms define what is the group ok, and the two very common 

examples we can immediately pick up are matrix multiplication of square matrices; 

square matrices of a fixed size say 3 ⨯ 3, 5 ⨯ 5, any n ⨯ n fix size square matrices.  

We can see that matrix multiplication you will get another matrix of the same size. So, 

there is closure a matrix multiplication is associative as you know. So, you get 

associativity the identity element is the diagonal 1 1 matrix, which as you know leaves 

the matrix any other matrix unchange if you multiply it on left or on right, and the 

inverse exist only for determinant not equal to 0. 

So, if you do not if the say example is of determinant not equal to 0. Then you can 

always invert such a matrix, so the inverse then exist. So, this is a very standard example. 

A geometric example is we can say examples, and put this is as number 1, and number 2 

is rotations of a rigid body of a rigid object. So, you can think of any you take a pen and 

then say you rotate it, you combine it with any one rotation is one operation. So, the set S 

in that case will be all possible configurations of the pen all the possible ways it could be 



lying, and you are start with any one way it is lying you can always bring it to any other 

and that is one operation, but if you combine such two such operations you rotate it from 

one configuration.  

So, let us say with a one point fixed to make things a bit simpler, and then you can 

always rotate it to one configuration, you can then rotate it to another configuration, that 

combination of two rotation says yet another which could have been done directly as 

well ok. 

It could be rotation about some third axis. Associativity is there for rotations because you 

can do them in any this sequence it does not matter that has to be checked of course, the 

identity is you do nothing. So, that operation you do not rotate it at all, so the identity 

operation exists and the inverse is you undo the rotation. So, Euler proved an important 

theorem in early days of dynamics that said any general motion of a rigid object is 

translation plus some 3 D rotation about a fixed point in the object.  

So, that is an important way of characterizing actually, now you can use it in reverse to 

characterize a rigid body, but rotation first studied in great detail by Euler. So, in that 

sense he had done group theory in a in it is preliminary form right then although he did 

not emphasize the group structure at that time, but he is specified all the machinery 

required to grapple with rotations they are called Euler angles which in mechanics you 

will probably learn alright.  

So, that is that lays out the very basic requirements of a group these are the most 

essential requirements of a group in addition there is a fifth property which is 

commutativity, which simplifies it make it is a it is an additional requirements. 
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So, it is more restriction which is optional and that is commutativity, and if this 

additional axiom is satisfied then it is called an Abelian group, then it is called Abelian 

or commutative group. 

So, rotations about a fixed axis rotations of a rigid body or you can just think in terms of 

rotation in the plane rotation of vectors let us say in 2 D plane. this is the most is a 

simplest example of an Abelian group and we deal with it all the time. So, you may be 

let me just write out how it works I have X and Y axis, and let us say I have position 

vector in 2 dimensions.  

So, it has components X and Y and then I can rotate the vector to a new position, where 

it may have components X’ and Y’ , and the angle through which it rotates is theta then 

we know that 

                                         
[X

'

Y
']= [cosθ − sin θ

sin θ cosθ ][XY ]
 

 So, if you think of the same vector as having rotated it is X component is reducing. So, 

                          X
'
= Xcosθ− Y sinθ and Y

'
= X sin θ+Y cosθ  

and then for all other angles theta. So, the group here you can think of it in different 

ways we already have abstracted in the sense of we are talking about vectors, we are not 



talking of much of a physical quantity the first 1 is actually you can think of a pen and 

think of rotations in a plane of about a fixed axis of the pen, but when we talked of 

vector we already became a little abstract.  

But furthermore you can now think simply in terms of these 2⨯2 matrices and then say 

my set consist of 2⨯2 matrices this obviously, as determinant 1 because cos
2
θ+sin

2
θ=1 . 

So, 2⨯2 matrices of determinant 1 we have we can easily check that the form a group 

because the product of any two of them will just be another rotation, and inverse will be 

just rotating backward identity is when it is identity associativity is inherited simply 

because it is a matrix, but furthermore it will be commutative because you rotate by θ1  

and then by θ2 it is same as rotating by θ2 first and then θ1.  

So, the set of matrices 2⨯2 matrices of size determinant 1 and determinant 1 is an 

Abelian group. So, that group would be called SO(2). So, this is like giving a trailer to 

what will come later, so thus set of matrices treated as group is denoted SO(2), O means 

orthogonal because these matrices also have the property that the transpose is the inverse. 

So, they are orthogonal matrices the size is 2 and S is for special orthogonal group means 

that they have determinant 1 ok. So, this is these are the essentials of a group the next 

thing I want to cover is vector space, which you are all familiar with you have been using 

Newtonian vectors for quite a while. 
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The word linear is often not even mention vector space is generically linear, so what is a 

vector space basically you have a set of vectors, set � which two kinds of operations + 

and ⋅. So, the plus is the linearity part that you can add anything, and the ⋅ is 

multiplication by scalars. So, there is v which + and ⋅ and an auxiliary set auxiliary set of 

scalars and of course, the dot enters only if you have those scalars.  

So the axioms can be stated in two parts under + the set forms an Abelian group. Ok, 

because there is closure there is associativity of addition identity element is because there 

is a 0 vector, and inverse is negative of a vector. So, under plus an Abelian group and it 

is Abelian right , in any n dimensions is nothing to do with 2 dimensions. So, under plus 

an Abelian group, and under scalar multiplication it is a linear and it is distributive. So, 

we can say a ⋅ v ∈ �.  

So, let us set the say the set of scalars is S, and a is distributive so that is the word use 

distributive in other words 
a .(v1

+v
2)=a .v

1
+a . v

2 . Additionally the scalars also have a 

algebraic structure of their own. So, that their own Abelian structure which a sign which 

without much first is called the same sign + although; that + is technically different from 

the plus of the vector space. So that a1+ a2 ∈S etc etc and then we have the third 

property. So, here I will put this 1 2 and 3. 

Third being that (
a

1
+a

2).v=a1 .v+a
2

.v
 so there are 2 pluses, but you can see that they 

merge because here it is sum of only the scalars, but here is sum of the 2 vectors.  

So assume it is very easily a transferred property and people do not distinguish between 

the two plus signs this vector space structure is very important in worths keeping in 

minds because we will be using it a lot, and it will be used especially when we get to 

representation theory groups are represented usually as acting on vectors like we already 

did right this example we saw was algebraically you can think of this as this set of 

matrices, but geometrically you can think of this as operations onto by onto dimensional 

vectors. 

So, we already have sort of a trailer of what is going to come later there is an abstract 

group where you may just specify a list you can just specify table you have some 

elements g1, g2, ,…., gn you just specify a 2⨯2 table which specifies what is g1⨯g2, g1⨯g5 



etc. That is sufficient to make it a group provided it the axioms are satisfied associativity 

and so on, but then in practice that is not have you actually use the group you use it by 

using those g elements as operations on something else So, the other classic example is 

permutations, so we can actually move to that. 

But just to finish what I was saying here we will always have these two versions of 

thinking, either you think only of the set of matrices and their properties and think it as a 

group, or you think of it in terms of how it affects 2 dimensional vectors. The advantage 

of this second way of thinking is that you could have also created matrices you can have 

higher dimensional representations, which we will see later ok. So, the representations 

can be many for the same group the same group may be realized in more base than one. 

So, you can think of say moment of inertia tensor and so we will come to the examples 

later more detailed examples later. 

But there are groups by themselves and their general properties and then how they affect 

a particular representation, where they are realized as actions on something. So, one such 

classic example is permutations as actions ok.  
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So, the permutation group is the group of all possible ways of, so group consisting of the 

action all possible ways of rearranging say n objects. The possible ways are group 

elements.  



So, we can see that this particular example permuting objects is actually a group, because 

you think of one particular permutation as one group element then you think of another 

permutation as another group element. Now, you know that if you do them in sequence 

you first do one permutation, and then follow it by another permutation it is again after 

all permutation of the same set, so you will get some other permutation. 

So, there is closure this is the first thing, so we can verify this, so given any example you 

have to mentally or physically or by through some modeling go through the exercise of 

checking these things. So, is there closure for permutations values then the question is 

whether they are associative this requires work, but one can do it needs to be checked, 

and identity of course exist, because you do not permute you do not anything to that set 

of objects then you have identity, and then inverse means you undo the permutation you 

go back to the previous one.  

Now, permutations are very interesting because it turns out that and this theorem we will 

prove next time that any discrete group is subset is a sub group of some permutation 

group ok. So, there always exist some permutation group of whose your interesting the 

discrete group of your interest is going to be always subset of some permutation group. 

So, we will prove that next time but this is a very important and interesting reason why 

permutation groups are studying and we developed special notation for discussing the 

permutation groups. So, before we go on let us do the last bit of algebraic preliminaries, 

the reason why we mention permutations is that thought of it is operations there 

obviously a group, but additionally you can realize them as matrices by if you have n 

objects then you write the n objects as a vector and then any operation is basically 

exchanging them. 

So, you can write out the so representations can be can be represented as matrices. So 

this was also meant to give you an example of what is the group and what is the 

representation. So, the group you can specify simply by listening what permutation 

followed by which permutation will give you then which new permutation in a list of 

permutations only, but then you can write out matrices which will actually under matrix 

multiplication reproduce what would have happen to the permutations. So, that is the 

idea of our representation.  
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So, the final interesting algebraic structure that we want to discuss or algebraic concept is 

the concept of equivalence relation, this is a very a cute idea looks very simple, but is 

very far reaching. So, we say that for a set for a set S a relation R is a conditional about 

to a, b etc ∈ S, such that a is always related to a. So, you give some condition. For 

example, you say straight lines in the plane a straight line is related to another straight 

line provided it is parallel, a straight line a and straight line straight line l1 and straight 

line l2 are related, if they are parallel and not related if they are not parallel. 

So, you can set up some kind of a condition property of straight lines in the plane, and 

another one; one can think of is perpendicular property, so these two are interesting 

simple examples. You say that one straight line is related to another if it is perpendicular, 

and we will see how the axioms we are saying are going to affect going to work in the 

two cases.  

So, we say that a set is an equivalence relation if three conditions are satisfied by that 

relation R; an object should be related to itself. Now, if you think of familiar relation 

although mathematics is not going to work there very well certainly you are related to 

yourself. So, it would work there number 2 a R b ⇒ b R a ok, and if you have if you 

generically say blood relative or something like that then yes if a is related to b then b is 

related to a, but if you say something like brother of then it may not work in reverse 

because the other person maybe sister. 



So, this is where these properties are important you have to specify what the relation R is, 

and the third thing is transitivity if a R b and b R c then a is related to c; a R b and b R c 

then that implies that a R c. So, these are called reflex reflexivity this is called symmetry 

sorry about that and this is called transitivity. You it carries on if a is related to b and b is 

related to c then a is also related to c. So, a relation R satisfying these is called 

equivalence relation, you can think of many relations and they will not satisfy these.  

So, it is a very powerful requirement actually; these properties is called equivalence 

relation. And we will see a very important consequence that this has very shortly, but 

now we can look at our 2 examples we thought of parallel and perpendicular. So, if you 

say that parallel is my relation; then any line is parallel to itself. So, it satisfies reflexivity 

if a is l1 is parallel to l2 then naturally l2 is parallel to l1 , so it satisfy symmetry and if l1 is 

parallel to l2 and l2 is parallel to some line l3 then it will also follow that l1 will be parallel 

to l3.  

So, in the plane there is parallel is a property that is an equivalence relation.  

But let us look at perpendicular; it fails the very first requirement because a line is not 

perpendicular to itself ok. So, is perpendicular to is not an equivalence relation. Now, let 

us state the important theorem. The theorem is that if you have any equivalence relation 

in a set then that relation divides the group, divides the set into mutually non intersecting 

subsets ok; divides the set into disjoint subsets.  
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So, pictorially I think of it like this is my big set and I will end up forming subsets such 

that no two of them will overlap. Now, it is easy to see why I mean we can prove why 

this happens that, so think of; let s1 , s2 ,…. etc be some subsets. Let s1 be such that all 

elements in it are related to each other related by R. 

Now, first we prove that there is nothing in S which is not already inside s1, this is so s1  

is a very unique uniquely defined set in S because any other element that belongs to S 

has to be included in it by because all the elements that are related are included in s1. 

And if you have any other set s2 then no element of s1 can be related to any element in s2, 

because if anyone gets related to s2 then through transitivity all the elements of s2 get 

related to all the elements in s1 then essentially s1 and s2 are the same subset ok. 

So similarly, let us say s2, now s1 necessarily is disjoint from s2 because if a ∈ s1 and b 

∈ s2  and hypothesis a say is related to b, then this hypothesis forces you to conclude that 

s1 and s2 have to be same sets because have to be same sub sets due to transitivity, right 

because any. So, once you declares that a here is related to b there then because of 

transitivity this since this a is related to everyone here, but it is now related to b therefore, 

b by transitivity is also related to all. In other words you get a new set this whole thing 

has to be really 1 set by itself ok. 

So, either the 2 sets are disjoint or they are the same and further more because the 

equivalence relation actually exist over the whole set; it covers all the possible elements 

in the set. So, the union of all the disjoint subsets thus, make up the set back as well, so 

that is also important to know. So, you may have n number of elements in it which are 

not related to anyone except themselves. The reflexivity holds, but it does not relate to 

any others. So, I have a special element a which relates to of itself the property specify it 

is that relates, but it need not be related to anything else. 

This point will by itself be a set a subset single point subset and you can have several of 

them. But any other set which contain any other subset, which contains several elements 

will be other category of subsets. But these two categories will exhaust all the possible 

subsets you can have and the union of all such subsets which are all disjoint that union 

will make up the original set back again.  



So, it is a very nice partition of the whole set that is implied by present existence of an 

equivalence relation. So, but as I said not all relations are equivalence relations and not 

all sets may admit such nice equivalence relations, but it is going to be a very important 

concept that we will use improving some of the things ok.  

So, I think we can end with this here today.  


