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So, welcome and we are now moving into the more interesting part of group theory. 

Where, we learn about representations and we learn a little bit about how it is applied to 

real systems like molecules. Their the applications are actually extensive molecular 

physics as well as lattice dynamics, but to lattice dynamics and to condensed matter 

physics application requires knowing condensed matter physics and lattice structures 

reasonable well. So, that would really take us out of the main focus of this course. 

So, we will stay with the basic methods and the basic concepts and their proves and then 

apply primary lead to the molecular case, which is a little bit simpler. So, to continue 

from last time what we are discussing are two things representation and within that 

characters of representations. 
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So, these are the two broad concepts we are progressing on, now last time we had some 

overview of this, but today we can be a little more formal. 



So, we say that; Firstly, a representation essentially is a realization of group operations in 

linear algebra. This is what it really is what this means is thus the carrier space is a vector 

space, � and the group elements become matrices � acting on �. The size of � is called 

the dimension of the representation. 
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So, you can represent on vector space is a different sizes the size or dimension of �, in 

the usual vector space sends that is one way of saying it is the number of basis elements 

require to represent the vector space to represent all the vectors. 

So, the dimension of � is called the dimension of the representation, this is a little 

important note matrices �(r) size n⨯n, when dimension of � is n ok. So, at n dimensional 

representation of a group means that you have n⨯n so, actually n2 is the size of that 

linear space, but this is the size of the vector space. Now, in general one can represent 

same group or realize the same group on vector spaces of different size. 

So, we will get into a bit of terminology let us also define some symbols. So, symbols to 

be used are that we already introduce this � and the � is the vector space. And the set of 

matrices, which acts on vector space is called the general linear group ok. So, let us write 

this down. Note that matrix algebra has a naturally endowed group structure, because I 

mean even natural numbers have a group structure because you can add things and 

subtract things. And so, there is some group operation you can identify within your 



already existing knowledge of this algebra and here the group structure is that the sum of 

vectors is a vector and so on sum of matrices a matrices. 

So, sum of n⨯n matrices is a group under multiple editions, but what we will be using is 

multiplication of n⨯n matrices, which are invertible of determinant ≠ 0 ok. So, these are 

the two different types. So, for example, one is this, but the one we will be using is the 

second one also we have multiplication and that is what we will be using. 
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So, we call this set of in the more abstract sense in the linear algebra sense the matrices 

form a general linear group or the general linear group, acting on a vector space � and 

well acting on vector space � constitute the group called general linear group denoted 

GL(�). 

So, there are special cases of this which we use this notation GL(�) we will be using for 

a short time for 1 or 2 lectures, but in practice we denote GL(n,ℝ) to be the group of n⨯n 

matrices real matrices, i. e the vector space is identified to be n dimensional real vectors. 

And, similarly we have GL(n,ℂ) here all the entries can be complex all the n⨯n metrics 

entries can be complex and the vector space is likewise complex it has complex 

components. 

So, this will be one of our notations that will be required, when we are dealing with 

representations, but GL(n,ℝ) has no restriction, you can have things that will have zero 



determinants. Then the then the no sorry I am very sorry very sorry take that back, 

because the inverse will not be defined unless. So, I think we should at that here. So, 

matrices the of the type I myself get carried a being doing this all the writing. So, we 

already emphasize that we will be using the second type. So, of determinant ≠ 0 from 

abstract point of view matrices and acting on a vector space and with determinant ≠ 0. 

Thank you, otherwise it will not constitute a group. So, here it was. So, we already said 

that we want only those that have determinant ≠ 0. So, this is called the general linear 

group. 
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Now, we want to move towards the other notation we use is that the in general you can 

also have, we can have n⨯m matrices, such that A matrices and we denote them a such 

that A : � → �’. And clearly the by the matrix so, we are switching between the concrete 

notation of a matrix and a linear operator. 

But, the point is that since it acts on � it must have as many rows as the size of �. So, if 

dim � equal to so, if it is n it is number of row is n write and dim �’ = m. So, just to not 

get lost let us draw this. So, I have n entries here this is �. So, I must have as many 

columns. So, number of columns must be also n. So, that I can multiply this then the 

number of row and suppose it produces and m dimensional vector �’. 



So, the number of rows here n columns such a matrix we call m⨯n matrix. So, that is 

right. So, if we have n dimensional � and it gets mapped into an m dimensional �’ then 

the matrix must have m rows and n columns. This we will need for a little while it is not 

going to be part of major group theory, but in order to prove some important things about 

representations, that have different sizes we will need this for next 2 lectures. So, we also 

have operators of this type which map � → �’. 

So, before we go on let me just tried to as an interlude because now we are going to do 

something a little more technical where what we want to next prove we Schur’s Lemma, 

but we will see an example of where we are going after I stayed Schur’s Lemma. 

So, next we shall prove Schur’s Lemma actually it is such a interesting thing that it is a 

theorem by itself, but you will see later why it is called lemma because Schur proved it 

on the way of proving something much bigger. So, we shall prove Schur’s Lemma, 

which basically says that if there are representations � and �’ such that A� =�’A ok. 

Such that that size of A matches the required m⨯n thing. So, D is let us say m⨯m this is 

m⨯n. So, just picking from here this means that this is n⨯n and this is m⨯m, then it can 

take a n⨯n metrics if you multiply it by an m⨯n matrix. 

Then, it will convert it into a n⨯n metrics and then that can be multiplied on the right by 

an m⨯n metrics right. So, if there is an A such that it kind of commutes with two 

representations that converts one representation into the other, then this A has to be 

trivial or it has to be. So, either it has to be all 0 or it has to be identity or �=�’ and A is 

proportional to identity matrix, where n will be the dimension of that �. 
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So, using this theorem, which we will prove is called the great orthogonality theorem. 

The great orthogonality theorem roughly speaking is row by row and column by column 

orthogonality among representation matrices. Now, a little example and the example is 

the very exciting one that we have been considering for a while this is the S3. Which is 

just to remind you again two ways of thinking it is either all the permutations of 3 objects, 

but geometrically it is also the symmetry operations of an equilateral triangle. 

Because, you get C3 if you just rotated, but then if you flip it along the 3 altitudes then 

you get improper rotations. So, if you include those as well then you get 6 elements and 

that is what is S3 and we have been writing out ok. So, we will so, one way to write these 

elements is to denote them, the list of elements is we write out in the usual permutation 

way, but I think the space will not be enough well let us just write it once (2 3 1). 

So, this is cyclic permutations and you can see that the cyclic permutations are the usual 

C3 elements (1 2 3) → (2 3 1) → (3 1 2) so, it just rotating the triangle. Now, we do an 

anti-cyclic permutation. So, we say (3 2 1). So, that becomes anti cyclic and then cyclic 

permutations of the anti-cyclic form also work, I hope that already has (1 3 2) ok. So, the 

first 3 form a proper subgroup which is just C3 I can write it on the left hand side there is 

space here forms just the subgroup C3 and then these involve flips. Now, what the next 

thing we do is write out the representations for this. 



So, one thing that I should have talked about in the generalities is faithful versus 

unfaithful representation which emerges now. So, consider a representation D of size 1 

ok. So, actually this is 1 is label and it is I think at the or here we write it is size n = 1 ok, 

that is where I represent all elements by 1. 

So, this is the trivial representation, which is available for every single group – discrete, 

continuous whatever you have. Now, this does not look like a very exciting 

representation because it is mapping every operation into one of course, under 

multiplication any group multiplication table will be satisfied. 

So, that is a very silly way, but it turns out that like we have 0 in addition this 

representation anchors all the irreps ok. So, the representation is irreducible, completely 

unfaithful, it is not homomorphic, it does not preserve the formalities homomorphic, but 

it is it kills the information detailed information about the group. So, such a 

representation is called unfaithful. So, there is another representation also of size 1. 

So, the other representation is also 1 dimensional where you put all the proper rotations 

has +1s and all the improper rotations has -1. So, 1 1 1 1 and -1 -1 and -1, the reason why 

this works is you remember that if you do an improper rotation, which amounts to say 

flip, but if you flip twice not necessarily are about the same altitude, but even some other 

altitude if you flip the triangle twice then it will come back to a form which can be got by 

simple rotations.  

So, product of any two of these will give you this and product of these by themselves 

from a group. So, this 1 1 and 1 is effectively that trivial representation of C3 and the 

other elements of S3, which are improper rotations get represented by -1 and then they 

have the correct property. 

And the other representation you can think of is the 2⨯2 representations, which are the 

3�/2 rotations and the improper ones,
[

1

2

√3
2

√3
2

− 1

2
]

and those. These are the 2⨯2 matrices 

acting on vectors in xy plane. 
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So, let us write those down. So, the D3 for the same list but the this one is just [
1 0
0 1] , then 

the next one is
[
− 1

2

√3
2

−√3
2

− 1

2
]

. And the next one is
[
− 1

2

−√3
2

√3
2

− 1

2
]

, then for these we start with one 

of them gone improper. So, these are
[

1

2

√3
2

√3
2

− 1

2
]

 and so on. So, there is a 2⨯2 representation 

of all these operations like this. 

(Refer Slide Time: 28:51) 

. 



Now, we defined the character of a representation, the trace of matrices. The traces of 

matrices D(�)(g) are called the characters of g in the representation �. 

Now, the main consequence of this is that the characters of matrices belonging to the 

same conjugacy class are all the same ok. So, result or theorem are equal this is because 

if h1 and h2 belong to same conjugacy class or conjugate to each other same thing. Then 

there exists g∈G such that gh1g
-1 = h2, but now we in terms of a representation this 

would mean D(�)(g) D(�)(h1) D
(�)(g-1) = D(�)(h2). 

But, we know that the D(�)(g-1) = (D(�)(g))-1 , this is because you have to get identity 

matrix out of this multiplication. So, if it is the inverse this is because D(�)(e) = In⨯n for � 

n dimensional. So, if the representation � is n dimensional then identity matrix has to be 

represented by the identity matrix of that size. 
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And therefore, the inverse of a particular group element has to be represented by the 

inverse matrix of that group element ok. 

Therefore, coming back to this now we take trace of both side of D(�)(g) D(�)(h1) 

(D(�)(g))-1 = D(�)(h2). So, if we take trace, then Tr(D(�)(h1))=Tr(D(�)(h2)) because under 

trace you can cyclicly rotate the matrices. And so, you can bring the (D(�)(g))-1 to this 

side (D(�)(g))-1 D(�)(g) = I,so, it will become right.  



Using, Tr(ABC) = Tr(CAB) everyone knows this yes, if not I will write it here it is a 1 

line proof. Because note that this is same as what is the matrix ABC = ∑AijBjkCki, but 

once it is tied up like this it is equivalent to ∑CkiAijBjk correct. So, we have suppress the 

explicit statement of summation, but we can put it in if you like. So, then it is also 

explicit that there is no commutativity issue these are just numbers and there is a big 

summation our i j and k. And so, this is just visually to help us to bring C here, but once 

brought here we can think of this as Tr(CAB) ok.  

So, because of this Tr(ABA-1) = Tr(B) right, which is what we have used. Therefore, all 

elements belonging to the same conjugacy class have exactly same character so, thus 

proved. 

But, as an appendix we just say that this is the property we have used; So, now, to go 

back to our example. 
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So, returning to our example we have these representations. So, we see that we can 

calculate characters of our representation the characters in this case are trivial traces of 

1⨯1 matrices are the values themselves. So, the trace of everything here is 1. Then the so, 

that at least ensures that everything in the same conjugacy class is the same. Here the 

trace of the 1 is connected to identity by usual rotation are all 1. 



But, the trace of the improper rotations are all -1, but at least there all similar and 

remember the idea of conjugacy was that essentially asides from a change of basis; a 

conjugacy element does the same thing that another member of the same class does. So, 

these three which are essentially flips the either flip around the vertical what is altitude or 

the once that are cross like this, but there all flips. So, geometrically they have the same 

operation and you can rotate one into the other. 

But, just doing that rotation does not change it is character in this sense it is its character; 

it is like it is property. So, the character of these three remains the same and therefore, 

they have the same character -1. The more interesting thing is the characters of these and 

we can write so, the letter use for character is �. 
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So, �(2) values here are 2 then this is equal to -1/2-1/2 = -1, this is -1 and then these if we 

see we will add 1/2 and -1/2 so, 0 0 and 0. So, the character the character of these group 

elements in the representation, which we have called D3 because 2 is that one with flips 

signs D3. 

So, D3 : the character of identity is 2, the character of these two which are proper 

rotations is -1 and -1. So, these two remember that the identity is always in it is own 

conjugacy class, because gh1g
-1 = h2, but if h1 happens to be identity then gg-1 will always 

give identity. 



So, identity is in it is own conjugacy class. So, this is by itself, it has character 2. These 

two are in the same conjugacy class because they are essentially proper rotations by 

hundred and twenty degrees and they have the same character, that character turns out to 

be -1 in this representation and all these improper guys have the same character which is 

0 ok. 

So, we can now create a table which is somewhat like a multiplication table, but now 

only of the characters. 

(Refer Slide Time: 40:59) 

  

We have the class of character we have 3 character classes and how do we know this 

there is also a theorem recall for S3 for Sn number of conjugacy classes is equal to the 

number of partitions of n, this theorem we proved by writing the notation in terms of 

cycles, through cycle notations we check this. 

So, here we have 3=3=2+1=1+1+1. So, there are three ways of partitioning 3 and 

therefore, the root should be 3 independent conjugacy classes, which we also see directly 

in terms of this list because they split up like this. So, clearly there is this conjugacy class 

this and this. 

So, we denote the conjugacy classes by C and then write out their characters. So, in the 

vertical column we write C1, C2 and C3. So, in other words we label the rows by the 



character class or the conjugacy class and here we write the character of the 

corresponding representation so, �(1), �(2), �(3).  

So, just to repeat what we are doing is instead of writing the big table I could write this 

table ok, which generates some generic list, some generic way of writing out the 

elements. And then for each element in three different representations I write out their 

matrix representations full-fledged. 

In principle I could have returned some D4, some D5 etcetera whatever, but I could create 

a gigantic table or a gigantic list of what is a group element and which matrix it is 

represented by, but what we find is that from geometric point of view it is only the 

character that matters. 

So, instead of listing all the group elements we only list the conjugacy classes C1, C2 and 

C3 and instead of listing the entire matrix representation we simply write the character of 

that characteristic class in that representation. So, we can read back and write down what 

the characters of first two. So, by the way this is the 	, you know it is that represented 

the cyclic group of size 3. 
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Anyway unfortunately in books the mix up all the symbols anyway. So, it does not 

matter and from contacts you know which is which. So, I have called here the conjugacy 



classes C1, C2 and C3. The conjugacy class of 1 is the identity and for identity we know 

the character of this and this is just 1 and 1.  

And the in the representation number 3 the character or the trace was equal to 2, then this 

remains 1 and 1 boringly nothing changes. And here for this we see that these two which 

form the class C2 both have character just 1 and this has character -1. 

This conjugacy class has character -1 of improper rotations. And finally, we can write 

out these happen to have 2 and then because the diagonal elements were cosines of 

hundred and twenty degrees adding them we got -1. So, this is -1 and the character of 

this is 0. Now, we claim that it is not necessary to build any bigger table, for most at least 

the molecular physics applications it is actually sufficient to just know the conjugacy 

class table and not the big multiplication table or the big matrices themselves. 

Also, how do you know how many representations you should take well it we will prove 

that there are no more irreducible representations? So, these are all the reducible 

irreducible representations there are for S3 and these are all the conjugacy classes there 

are for S3. This fact followed from our theorem about partitions that there are only 3 of 

these. 

It also turns out that there are only exactly as many irreps as their a conjugacy classes, 

which is something to be proved later ok. But, so, this example makes it graphic what we 

are talking about and the fact that this is all that you will in general need to understand or 

split up the vibrations of a molecule and relative intensities of lines and so on. 


