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Well, I can tell you that if you liked it so far it is going to get more and more interesting, 

ok. It is really quite magical what comes out of group theory in the end. For that we have 

to understand this idea of conjugacy classes very well and then from next time we will 

start representations and that is where the all the power of it comes because.  
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In fact, chemists use the group theory all the time, but if you use chemistry books or 

chemistry lectures presentations they never teach any of this background. There is 

shortcut rules for figuring out the character classes of molecules and they just fill out 

tables, and then they quickly can see selection rules or multiplicities or degeneracies of 

state transitions and so on. But we being physicist you know we will labour through all 

the reasoning why those things work, but of course, not labour as much as mathematician. 

So, let us just try to gather all the things that we have been studying.  



(Refer Slide Time: 01:26) 

 

So, the early parts where of course, group subgroup and coset spaces and Lagrange’s 

theorem has to be an integer; so now we are on to the idea of conjugacy classes and also 

the representation in cycle notation. So, currently what we are going through its 

conjugacy classes and of course, we are adopting cycle notation alongside.  

So, today we will see some comprehensive picture of all of group theory in some sense 

ok, emerging from these things. But just to complete this ideas the thing to remember is 

the overarching theorem Cayley's theorem that Sn is sufficient to embed any group we 

know, ok. So, sufficient to include any group of order n as a subgroup and this is of 

course, Cayley's theorem.  

And the proof these are called constructive proof where the proof is not just a clever 

argument, but it actually demonstrates by in detail why the thing works which is the I do 

not know whether it is called in literature like this, but let us call it Cayley map. The map 

is that for corresponding to any �g where, g ∈ G there is the permutation g which can be 

written out as 1 to n and then the fate of g(1)…. g(n) ok. What is the effect of the group 

operation on g(1) or group operation on g(n)? We will be shifting these definitions for 

convenience, but they will be defined precise clearly in the context in with they are being 

used. So, we have this map and we saw that this leads to some interesting results two of 

the important results.  
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One is that the groups G through this embedding are realized as groups consisting of 

regular cycles ok. So, there is notion of regular cycle which contain identity or only those 

elements of Sn which necessarily change everything shift all the elements permute all the 

elements. And let me remind you here a little bit permute all the n objects in the carrier 

space of Sn, ok.  

So, the regular cycles are those that will necessarily change everything the, so what is 

carrier space of Sn it is any said that contains some n objects. And it is called carrier 

space because by operations on this space we can realize the elements of the group Sn. So, 

these two, we have to add identity as a special case because somebody legally will say 

identity does not touch anything else anything at all. So, yes, so that is the only one that 

is an exception, but all everything else is necessarily something that shifts everything.  

Now, one can check that, and this is where there was some ambiguity last time partly it 

arises because this book Hammermesh which contains everything, but it is scattered and 

not punctuated very well you know the concept where the definitions begin and where 

theorems begin and end things are not punctuated very well it is like a big rush of ideas. 

So, I got a little confused there, but if I consider what Hammermesh book says, then 

basically we could have directly stated the following theorem that all embeddings of G 

with |G| = n into S n are as regular cycles.  



Need not call a theorem this is actually more like a proposition it is a fact which is sort of 

obvious from construction. So, this fact follows simply from the fact that the group 

multiplication is unique. So, that the multiplication table always has all the elements 

being permuted the n elements and therefore, when you embed them in the big 

permutation group they necessarily content cycles of this form ok, that is the statement. 

So, they are all necessarily regular cycles or identity. So, this is one general result. 

The second result is that when you consider this embedding embed the elements 

represented in this way are necessarily ones with equal number of elements cycles of 

equal lengths. So, preposition to, so called this preposition 1 is that of a group G get 

embedded as cycles as elements of Sn made up of cycles of equal length. 
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And this fact follows from the construction from preposition 1 that such embedding has 

to be necessarily regular. So, I will just say check rather than proof the check is that you 

will have some number of cycles representing G, �g let us say, and let us say this cycle 

has length l1 and this cycle has length l2 and so on. Then we can see that (
π
g)
l

1

will result 

in exact same order as original in this slot the first slot in first cycle can you see it.  

Whereas here we do not know what happens if l2 and l1 are not compatible, if l2 is a 

factor is a if l2 is a much smaller number and the factor than it may be ok, but if l2 is 

comparable and larger and not having a integer fraction which is l1 then this l1 cycling 

will leave l2 in some unusual configuration which is not same as original. But we already 



concluded that if one piece is same then all others have to be same because otherwise 

you will have two different group elements having same for cycle which is also not 

possible because it means that their multi in their multiplication table the first l1 entries 

are same this cannot happen for two different group elements, ok. 

So, this means cannot be consistent embedding unless l2 equal to l1 etcetera due to the 

properties of multiplication table, ok. So, this consistency requirement comes from the 

property of the multiplication table from which you constructed this embedding. So, 

these two facts are interesting facts for embedding of n → Sn.  

Now, let us go over some caution about the cycle notation and how to manipulate cycles. 
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So, here what I have tried to identify is the fact that one thing is that if you have a 

permutation which is an n cycle, this n need not be size of the group it could be any as 

could have written r ok, but if you have (1 2 3…. r) an r cycle if you want to write it up 

as a product of transpositions then it turns out to be (1...n) followed by (1….n-1), so 

transposition of (1 3) and transposition of (1 2).  

So, you can check that you can read this from right to left because we want this to 

operate on something that it is this sequence of transpositions that makes up the cycle. In 

other words there are (n-1) transpositions in an n cycle, ok. So, whether a cycle is odd or 

even is decided by this list and it contains (n-1) the oddness or evenness has to do with 



whether (n-1) is odd or even, ok. So, a 2 cycle which is transposition itself is necessarily 

odd right because it makes one change. So, an even numbered two you remember it like 

this if it is a transposition with only two it actually results in an odd cycle. If you have a 

usual cyclic permutation as we say in physics (1 2 3) → (2 3 1) then that actually 

involves two permutations and therefore, it two transpositions and therefore, it is even. 

So, and that is a odd number, there are odd number of entries in that. So, there is (n-1) is 

the number that decides whether this n cycle is odd or even.  

The other this is an interesting trick that I read in Hammermesh I do not know right now 

how to illustrate or I will probably not given a problem based on that, but it is interesting 

to know this that suppose I have one cycle which is (a1 a2) then some other element 

follows ar and goes up to ap. So, this is a cycle in the sense that a1 goes to the next one 

next one up to a2, then a2 goes to ar and then continues up to ap. Suppose you take this 

cycle, but hit it on the left within (a1 a2) transposition ok, subsequent to doing the cycle 

you do (a1 a2) transposition. What does this do it? Actually breaks up this cycle because 

this instruction says that a1 and  a2 are now exchanged. 

Now, here what was happening was that a2 was going into ar, but now it that is no longer 

the case because a2 is now suppose to go to a1 so that account kind of closes this cycle. 

So, this becomes a cycle by itself and ar has nothing originating it. So, it begins a new 

cycle by itself. So, there is this kind of a rule that operates for if you manipulate in terms 

of cycles then this is one way of that it will enter and in reading all of these I would say 

this general warning carrier space versus operations. So, the explicit notation with two 

rows that we have actually each row denotes state of the carrier space displays states of 

the carrier space right because it shows 
[1 2 .. . . n

a
1
a

2
. . . . a

n]
. So, this is the initial 

configuration of the carrier space and after the operation of this it will become this that is 

what it is showing. 

On the other hand the cycle notation directly contains instructions for operations, for the 

group operation. So, this is worth remembering if you ever get confused about what is 

happening which at least I got for some time. So, I have written here in the explicit 

notation of two rows each rows denote the state of the cycle space the n objects are listed 

out, it is meant to represent a group element and operation by displaying the carrier space 

in the two copies of the carrier space.  



On the other hand the cycle notation is especially the assertion I made depends on you 

can always break it up into this transpositions and then that can be seen as a set of 

instructions for what to do on carrier space, transpose this, transpose this, transpose this 

pair etcetera ok. So, that is what the difference between the two is anyway. So, these are 

general comments for when you to keep in mind when you are trying to understand or 

calculate.  
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Now, we come to an interesting statement about conjugation of this conjugation 

operation. We did one example and I tried to see if there is any other reasoning, but turns 

out there is the kind of problem that I gave in which the a is, so looking look at this 

equation, b=σaσ
− 1

 this is what we mean by conjugacy transformation.  

The problem given, there gives you b and a and ask you to guess � and this kind of a 

problem does not seem to have any simple ways of doing and at least the simpler 

problem that we gave it was possible to make guess work. But I could not see any 

generalization of that, but their it works what the solution we got in class is correct but I 

could not find any general way of checking if I find have you let you know. 

For the time being I want to show you what happens when you carry out such a 

conjugacy operation. In the two row notation there is some very interesting thing that 

happens. So, consider a element 
[1 2 .. . . n

a
1
a

2
. . . . a

n]
and we call this a. And consider the 



transforming element � which is 
[1 2 .. . . n

s
1
s
2

. . . . s
n]

. But now we also play a trick and this 

is the crucial trick. 

Note that we can always also write it by list some random elements a1 …... an and always 

says that the second row consists of whatever happens to a1 under operation � . So, this 

is saying nothing it is a redundant statement actually if you see that �, well � if you 

wrote it into in fact, you can consider it as a prescription for how to write the two row 

notation for �, the instruction is that given an element a1 in the lower row you must write 

the fate of that element under the operation � that is all it says ok. But certainly therefore, 

I can write out � in this form. This is the sub commentary Hammermesh does not give. 

So, the only clever thing we have done here is we have chosen this top row configuration 

to be whatever is going to appear in a in the bottom. Now, so this is how we write �. 

Now, we proceed to compute this b which is σaσ
− 1

in which we write a of course, as 

defined here we write �-1 by taking this thing upside down, clearly �-1 this thing upside 

down right which is the it is the inverse operation of � and the first factor � we write in 

this format, ok.  

Now, what is clever about this is that now we can start cancelling. We can cancel this 

1…..n and get it to be (s1 s2 …..sn) going to this right or we can see it s1 → 1 and after 

that 1 → a1, s2 → 2 and 2 → a1. So, after I complete this multiplication I will basically 

have         

                                                  
[s1 s2 .. .. sn
a1 a2 .. .. an]  

but now I can do the second operation where I cancel of the (a1 a2 …..an) row. So, that I 

am left which an answer, 

                                          
[ s1 s2 .. .. sn
σ(a1) σ (a2) .. .. σ(an)]

 

So, b is of this particular form.  



Now, as I said the trick is in introducing the two equivalent ways of writing � which 

were to ever the result is now very interesting I should have highlighted this. So, if 

somebody hands you a, and then hands you are � you can proceed to write out b without 

having to suffer all this by just putting the first row of b to be whatever is the second row 

of �, ok; and by putting in the second row whatever is the effect of operation � on the 

second row of a. Another way of saying it is once you understand what this instruction 

�(r1) → s1 → s2 you take these instructions apply them to the top row by itself that will 

produce this row right because it sends 1 → sn and secondly, apply the same rules to 

second row independently. 

So, whatever � is suppose to do to a1 put it here and whatever � is supposed to do a2 put 

here. The set of instructions are all here what happens to each a1  value is written here. In 

other words the transformation amounts to applying the � operation separately on upper 

and lower rows of a that is what it boils down to. And why does this work? Why does 

this magical looking thing working? To find the conjugacy transformation all I do is 

apply conjugacy individually on the top row and bottom row. It is the one of the 

comments I made earlier about the two row representation. What does two row 

representation have? Shows the state of the carrier space, and the conjugacy 

transformation is something that, so you remember the vector space example on a vector 

space remember linear algebra here if I have suppose I have OA = B, ok.  

So, where  A and B are column vectors.  
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So, O is the matrix and A and B column vectors. Now, you know that if you think of this 

abstractions the column vector is after all some components and if it is suppose to be 

something physical then it has a meaning of its own. The individual numbers do not 

mean anything the whole collection, but this array has an, has the independent meaning 

as an array only if the numbers are arbitrary because they are only components with 

respect to some basis, right. So, you can change the basis. 

So, consider basis change, change of basis transformation A’ = SA, where S is again n ⨯ 

n matrix, n ⨯ n matrix should be non singular and B’ should not naturally be shifted to 

SB the components will change because you rotated your basis or even stress and strain 

does not matter this is the general linear transformations. Then that same operation OA = 

B is reproduced in the new basis provided we should prescribe O’ = SOS-1. Then I can 

make this whole equation OA = B read in the new language by applying S to the left, S 

on OA = B ⟹ SOA = SB, but SB = B’ and by inserting a SS-1 here right. So, then, we 

have to prescribe here SOS-1 then I can put A’ here by putting a SS-1 there, right. 

So, the kind of transformation we are talking about conjugacy transformation is well 

known in linear algebra as a similarity transformation. So, when similarity 

transformation seems to a quadratically σaσ
− 1

 on the operators. On the carrier space 

there is only a linear transformation and that is exactly what is happening in our two row 

notation because the conjugacy transformation amounts to doing conjugacy 



transformation on S as a carrier space list and on the second one also as carrier space list 

that is what is happening, because these are carrier space the vector space on which the 

groups act will eventually act as matrices, in fact, will be using that as a representation, 

ok. 

So, I think once you understand it is quite trivial, but it is interesting to note. This is 

about regular cycles this we did we went over first theorems of equality of lengths of 

cycles, for regular cycles which form order and subgroup of Sn. 


