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In the last lecture we had talked about the two qubit and multi qubit states in general, and then 

we had proceeded to just to introduce the elements of operators which would act on these states.  
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Converting them to different types of states and we had said that if my input is a single qubit and 

the output is a single qubit this operation has to be done by a 2 x 2 matrix or an operator 

corresponding to 2 x 2 matrix and we had also pointed out that there is a NOT gate which even 

classically is a eversible operation and obviously the corresponding quantum operation it will 

also be reversible. 
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And though we had said that the NOT operation is taken care by what we call at them X-gate, an 

X-gate has a matrix representation which is the Pauli sigma X matrix which is 01, 10. The 

another one which is popularly known as a phase gate, now a phase gate what it does it 

something interesting it acting on a state 0 it leaves it as 0 so therefore |0>  |0> but when it acts 

on a state 1 it becomes -|1>. So in other words it selectively provides a phase to one of their bits. 

 

So the corresponding operator is given by what is known as Pauli Z operator, so it is also called 

Z-gate, so NOT gate is pictorially represented as X and Z gate is pictorially represented as Z, the 

however in general, I could talk about a phase not which simply makes 1 to -1 but it could for 

example get be give a selective phase, so it could also be |0>  |0> but the state |1>  e
iϕ 

|1> 



and so on. So the corresponding matrix would be (100 e
iϕ

). Of course, you can immediately see 

that z : ϕ = Π because cos Π + i sin Π and cos Π = -1 there are a few other phase gates which are 

important, one of them is known as a T-gate. 
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Where we take the value ϕ = Π/4, so the corresponding if this is (1 0 0 e
i
 
Π /4

) this interestingly is 

also called a Π/8 gate. Now the reason for this funny nomenclature is that if you pull out a 

overall phase of e
i
 
Π /8

 then the diagonal elements have only Π/8 along the diagonals. So both the 

nomenclatures 8 gate and Π/8 gates are fairly common. 
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The next thing is what is possible is to have a rotation in a plane, the rotation in a plane is given 

by the rotation matrix which is cos θ, -sin θ, sin θ, cos θ which is rotating in a plane about the Z- 

axis which is obviously a possible rigid rotation, but one of the most important single qubits. 

Now remember in classical situation, the only one cubic or one bit gate that was possible was a 

NOT gate. 

 

But we have already seen that several other possibilities exist in case of quantum operations. 

Now one of these operations is very popular. 
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And is known as a Hadamard gate, now this is very specific to quantum computing from the 

simple reason that while in classical computing a 0 can either go to 0 or to 1 and similarly a 1 

can go to either 0 or to 1 a in a quantum computing there are other possibilities that is a state 0 or 

a state 1 can go to a linear combination of 0 and 1 as well. So here is the situation where the state 

0 goes to remember this state 0 is the correspond to bit 0 in the computational basis. 

 

But it goes to |0> + |1> by square root of 2 which as, you know is the one of the bases in the 

diagonal bases and |1>  |0> - |1> divided by square root of 2. Now this is known as a 

Hadamard gate and let me sort of explain. 
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Pictorially what does Hadamard gate stand for? Now first thing you have to realize is this is there 

in the picture, but let us look at it. So the Hadamard gate corresponds to a rotation first a rotation 

by 90 degrees about the Y-axis followed by a reflection. But before I explain to you this 

particular diagram let us recall the our representation on a Bloch sphere. 
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So remember my north pole was state 0, my south pole was state 1, and this is of course the 

equator, and we have said that the point where the positive is that X-axis meets the equator that 

is my 0+1/√2 and the opposite point, that is the point at which the negative X-axis meets the 

equator is 0-1/√2. So you notice now, now remember that this is my Y-axis, so what we are 

saying is this that the Hadamard gate which takes 0 to 0+1/√2 and 1 to 0-1/√2, now how does it 

work. The, so the first thing that you do is this have a 90ᵒ rotation about the Y-axis. 
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Now you notice what will happen in this picture, if you do a 90ᵒ rotation now remember when 

we talk about a rotation the rotation is always considered to be along the counter clockwise 

direction as viewed towards the object from the axis. So therefore if you did that they did a 90ᵒ 

rotation what will happen in the counter clockwise direction what will happen is that this 0. So 

let us look at what is happening now. 
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So come to this picture so I have this situation here, that there is a 0 here, there is a 1 there, okay. 

And if I now make a counter clockwise rotation the 0 has come to this point, the 1 has gone to 

that point. But you notice the state which is minus which was here because you are rotating long 

being counter clockwise direction that is now gone to the North Pole. But that is not the normal 

position on the North Pole, the 0 and the 1 are properly placed, but the minus state should not be 

on the North Pole but should go to the South Pole. 

 

So therefore, what you require now is a transformation which in words this plus and minus while 

keeping the 0 and 1 this side, which is done by having a reflection about the x, y basis which is 

what so therefore this is the geometrical interpretation of a Hadamard gate. 
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Now so these are the various single qubit gates, I need a few two qubit gates as well. The, now 

first thing that we realize is this. 
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That all quantum gates may be made to arbitrary degree of precision by only having one and two 

qubit gates and we will that, we require certain other three qubit gates for a complete description, 

but on the other hand if you just want to have single qubit gates this is would enough one and 

two qubit gates. Now so first we talk about some two qubit gates, now one of the two qubit gates 

which is also very fundamental in quantum computing. 
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Is what is known as a CNOT gate is full form is actually controlled NOT gate. The controlled 

NOT gate works like this. Now suppose this is my input side I am essentially drawing something 

which is the direction in which the logic is showing, so this is my input side so there are two 

qubits on the input side one is what is known as the control so the upper one is control bit and 

this is known as the target bit. So supposing my control is A and target is B, now the rule for the 

controlled NOT gate is that whenever the control bit is 0 nothing happens to the target bit. 

 

So if a=0, b remains b, but if a=1, if a=1 then the b, b becomes b bar that is script, that is 0 if b is 

0 it becomes 1, if b is 1 it becomes 0. And the way the CNOT gate is represented in a quantum 

circuit is to have a control there with a small dot there and a symbol for the bit. Now what about 

its matrix representation, the matrix representation is shown in the slide. 
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So look at it, if a is 0, b is 0 the bʹ which is the output it remains 0 because the control bit is 0, 

second case also control bit is 0, target bit is 1, so the target bit is unchanged remains 1. But if 

a=1 in these two cases, if b is 0 bʹ that is output is 1 if b is 1 output is 0. 
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I can represent this remember I give you a basis for the two qubit which was 1000, 0100 etc., and 

this basis is written as the following. 
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I have 1000 in this basis the CNOT matrix is 0100, 0001, 0010 so notice this that this block is 

essentially a σx matrix. And, and this can operate on one of the four basis states, right. So the 

four one of the four basis states where the first two entries correspond to control and the lower 

two entries correspond to the target. 
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And you can sort of convince yourself look at it for example what happens when this is 0010. 

What does it mean, so this means basically my state is 1 0 because this is the representation for 

10, now do the matrix multiplication since the control bit is 1 this means I would get the target 

bit equal to. Now you can multiply this you can see that this gives me 0, 0, okay and 000 so 01 

which is just be the representation of the bit 11 which what I expect because the control bit of 1 

so therefore that target is kept. So this is my CNOT gate. 
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Now remember I talk to you regarding Bell state now in the two things that we have just 

introduced I can design a computing circuit quantum circuit which will give me a Bell state, now 

let see look at for example the bell state. 
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That I would try to get is given by 00 – 11/√2 let see how it works. 
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And what you can do as an exercise is try to form the four Bell state the remaining three bell 

states one of them I am explaining. So what I will do is this, I take essentially a CNOT gate. 
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And my CNOT gate, but before I do that let me draw it out and then I will explain. Okay, so 

what I do is this I fix my control bit, the first line which is control bit to be 1 and this 1 I set it to 

be equal to 0 initially. Now the way this circuit is to be looked into is this is just the direction it 

means the logical straight. So because in time H is appearing earlier than this, so the first qubit 

would be subjected to Hadamard gate. 

 

So my control bit become like this, so I had one, now this one is subjected to Hadamard gate. We 

had seen by definition of the Hadamard gate this gives me 0 – 1 /√2. So you notice this control 

which is there now is not just a single control either 0 or 1, but is a linear combination of 0 and 1. 

Now help this qubit is to become 0 this will leave this 0 the same. So in other words since my 

target initially was 0, my next state at this stage is 0 -1 /√2 direct product with 0. 

 

So which is just 00 -10 /√2. Now when I subject this to a CNOT gate in this case the first cubit is 

0 that is control bit is 0, so therefore nothing happens to be 0. In so when I ask this to a CNOT 

gate in the second case my control bit 1, so my 00 remains the same there is a – sign already 

there, in this case control bit is 1, so therefore the target bit 0 will be flipped 0 will become 1/√2. 

 



Now so this state that you get here is see I cannot any longer write down the state here and the 

state there because this states, the two states here have become entangled, these are become 

entangled because there are no individual identifications here. And the output state is now 00-11 

what will make a different is if I make a measurement. If I made a measurement of a first cubit 

and I get a 0 the second cubit automatically becomes 0 and if I get a 1 from the first cubit the 

second cubit collapse to 1 that the concept of measurement I would talk later. 

 

But this is the way you can produce one of the four Bell states and I would argue to try to design 

simple circuits by which you can find the remaining or design the next three Bell states. 
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There is another get which a [indiscernible][00:19:51] gate. Now this can  actually even simulate 

all classic logic gates it is not done like that because as I told you there is garbage problem there, 

but this gate is called as CCNOT gate. Control, control NOT also called as a Toffoli gate. The 

logic for Toffoli gate is very simple, it has three inputs let us call them ABC. Now there is a 

control double control in this and this is my target both the end we have control. The target bit is 

flipped that is 0 becomes 1 and 1 becomes 0, if both a & b both the control, become a good one, 

which means if the product of a and b is equal to 1 then only c will reflect. 



 

Now look at the way a control bit action on the target bit can be written. Now recall that we had 

a normal CNOT gate where we said the following, if this a this is b we said this is always left 

without change, here also a and b will be left without any change. Here we said if a is equal to 1 

then only b will change, the way of writing this is to say b׳=b addition modulo two of a, this is 

the same as an EXOR because you notice if b is 0 a, b׳ takes the same value as a which means if 

a is 0 b׳ is 0.  

 

If a is 1 b׳ is 1, even the b was 0 which is what CNOT did. If a is 1 then b=0 okay. I still get bb׳ = 

1 which means b has been flipped. If a=1, b=1 this is 1+1 EXOR 1 which is equal to 0 okay. So 

this is the way it works, because it flips only if the control bit is 1. And this case I can write 

exactly the same way and I would say this is equal to C + addition modulo two with the product 

of a and b. 

 

So that if this product is equal to 1 which means if either a=0 or b=0 it does not work but both a 

and b are 1 then I am adding 1 to C which will flip. 
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You can repeat this using the slide I gave you that the operator representation of the unitary 

operator.  
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And you can see that is what it works.  
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Let me talk about two more gates first is a swap gate, swap as the name suggests simply 

interchanges two states. So therefore, the operator u as working on ψɸ, ψ is the first bit ɸ is the 

second qubit which is same as u as acting on direct product of ψ and ɸ it gives me ψɸ. So the 

corresponding operator expression is this, so that the ψ becomes the first line was ψ now the first 

line become ɸ. 
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There is a swap gate which is called a controlled swap gate, which is very useful in quantum 

computing and this is the same idea of a swap, this is, there are two pictures there represented 

either by this notation or by that notation, which says there is a controlled bit a going to be a׳ 

number a׳ as everyone say. Now this acts between b and c interchanging b and c making them 

like this. 

 

If the control bit is equal to 1, now I have given you a table by which you get the entire prove 

table that is called of what happens, for example, if a=1 means control is equal to 1 okay, b=0, 

c=0 right. Then a׳ of course will always remain 1, b and c which were 0 will be interchanged but 

it do not matter, because they were already 0 each so therefore it will remain 00. But if control 

bit is 0 as b is 1, c is 0 you notice b׳ becomes 0, c becomes equal to 1. So this is also known as 

Fredkin gate.  
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In the next lecture we will be talking about quantum circuits and how does one carry out or 

represent logic mathematical logic using these gates which we have talking about. As I have said 

to summarize we have elementary gates which operate on 1 qubit, 2 qubit, or request 3 qubits, 

you do not need any more to work even on n qubit states. 
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